{"title":"通过机器学习和深度学习技术进行城市交通排放预测分析","authors":"","doi":"10.1016/j.trd.2024.104389","DOIUrl":null,"url":null,"abstract":"<div><p>About 6.6 million people die every year from air pollution diseases globally. Transportation industry is considered one of the leading contributors in air pollution. This research utilizes deep learning and machine learning techniques to predict China’s transport-related CO<sub>2</sub> emissions and energy needs by utilizing variables like population, car kilometers, year and GDP per capita. The outcomes have been analyzed using six analytical measures: determination coefficient, RMSE, relative RMSE, mean absolute percentage error, mean bias error and mean absolute bias error. Findings indicate that yearly increase in transport-related CO<sub>2</sub> emissions in China will be 3.66%, and transport energy consumption will increase by 3.8%. Energy consumption and transport CO<sub>2</sub> emissions are projected to rise by roughly 3.5 times by 2050 as compared to current levels. Therefore, government should re-evaluate its energy investment plans for the future and institute new rules, and standards regarding transport-related energy consumption and pollution reduction.</p></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban transport emission prediction analysis through machine learning and deep learning techniques\",\"authors\":\"\",\"doi\":\"10.1016/j.trd.2024.104389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>About 6.6 million people die every year from air pollution diseases globally. Transportation industry is considered one of the leading contributors in air pollution. This research utilizes deep learning and machine learning techniques to predict China’s transport-related CO<sub>2</sub> emissions and energy needs by utilizing variables like population, car kilometers, year and GDP per capita. The outcomes have been analyzed using six analytical measures: determination coefficient, RMSE, relative RMSE, mean absolute percentage error, mean bias error and mean absolute bias error. Findings indicate that yearly increase in transport-related CO<sub>2</sub> emissions in China will be 3.66%, and transport energy consumption will increase by 3.8%. Energy consumption and transport CO<sub>2</sub> emissions are projected to rise by roughly 3.5 times by 2050 as compared to current levels. Therefore, government should re-evaluate its energy investment plans for the future and institute new rules, and standards regarding transport-related energy consumption and pollution reduction.</p></div>\",\"PeriodicalId\":23277,\"journal\":{\"name\":\"Transportation Research Part D-transport and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part D-transport and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361920924003468\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920924003468","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Urban transport emission prediction analysis through machine learning and deep learning techniques
About 6.6 million people die every year from air pollution diseases globally. Transportation industry is considered one of the leading contributors in air pollution. This research utilizes deep learning and machine learning techniques to predict China’s transport-related CO2 emissions and energy needs by utilizing variables like population, car kilometers, year and GDP per capita. The outcomes have been analyzed using six analytical measures: determination coefficient, RMSE, relative RMSE, mean absolute percentage error, mean bias error and mean absolute bias error. Findings indicate that yearly increase in transport-related CO2 emissions in China will be 3.66%, and transport energy consumption will increase by 3.8%. Energy consumption and transport CO2 emissions are projected to rise by roughly 3.5 times by 2050 as compared to current levels. Therefore, government should re-evaluate its energy investment plans for the future and institute new rules, and standards regarding transport-related energy consumption and pollution reduction.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.