开发用于骨骼修复的电纺电活性聚氨酯膜。

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Journal of Biomaterials Applications Pub Date : 2024-09-02 DOI:10.1177/08853282241280771
Fuhua Sun, Lishi Yang, Yi Zuo
{"title":"开发用于骨骼修复的电纺电活性聚氨酯膜。","authors":"Fuhua Sun, Lishi Yang, Yi Zuo","doi":"10.1177/08853282241280771","DOIUrl":null,"url":null,"abstract":"<p><p>To fabricate electroactive fibrous membranes and provide simulated bioelectric micro-environment for bone regeneration mimicking nature periosteum, a series of electroactive polyurethanes (PUAT) were synthesized using amino-capped aniline trimers (AT) and lysine derivatives as chain extenders. These PUAT were fabricated into fibrous membranes as guided bone tissue regeneration membranes (GBRMs) via electrospinning. The ultraviolet-visible (UV-vis) absorption spectroscopy and cyclic voltammetry (CV) of PUAT copolymers showed that the electroactive PUAT fibrous membranes had good electroactivity. Besides, the introduction of AT significantly improved the hydrophobicity and thermal stability of PUAT fibrous membranes and decreased the degradation rate of PUAT fibers in vitro. With the increasing content of AT incorporated into copolymers, the tensile strength and Young's modulus of PUAT fibrous membranes increased from 4 MPa (PUAT0) to 15 MPa (PUAT10) and from 2.1 MPa (PUAT0) to 18 MPa (PUAT10), respectively. The cell morphology and proliferation of rat mesenchymal stem cells (rMSCs) on PUAT fibers indicated that the incorporation of AT enhanced the cell attachment and proliferation. Moreover, the expression levels of OCN, CD31, and VEGF secreted by rMSCs on PUAT fibers increased with the increasing content of AT. In conclusion, an electroactive polyurethane fibrous membrane mimicking natural periosteum was prepared via electrospinning and showed good potential application in guiding bone tissue regeneration.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241280771"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of electrospun electroactive polyurethane membranes for bone repairing.\",\"authors\":\"Fuhua Sun, Lishi Yang, Yi Zuo\",\"doi\":\"10.1177/08853282241280771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To fabricate electroactive fibrous membranes and provide simulated bioelectric micro-environment for bone regeneration mimicking nature periosteum, a series of electroactive polyurethanes (PUAT) were synthesized using amino-capped aniline trimers (AT) and lysine derivatives as chain extenders. These PUAT were fabricated into fibrous membranes as guided bone tissue regeneration membranes (GBRMs) via electrospinning. The ultraviolet-visible (UV-vis) absorption spectroscopy and cyclic voltammetry (CV) of PUAT copolymers showed that the electroactive PUAT fibrous membranes had good electroactivity. Besides, the introduction of AT significantly improved the hydrophobicity and thermal stability of PUAT fibrous membranes and decreased the degradation rate of PUAT fibers in vitro. With the increasing content of AT incorporated into copolymers, the tensile strength and Young's modulus of PUAT fibrous membranes increased from 4 MPa (PUAT0) to 15 MPa (PUAT10) and from 2.1 MPa (PUAT0) to 18 MPa (PUAT10), respectively. The cell morphology and proliferation of rat mesenchymal stem cells (rMSCs) on PUAT fibers indicated that the incorporation of AT enhanced the cell attachment and proliferation. Moreover, the expression levels of OCN, CD31, and VEGF secreted by rMSCs on PUAT fibers increased with the increasing content of AT. In conclusion, an electroactive polyurethane fibrous membrane mimicking natural periosteum was prepared via electrospinning and showed good potential application in guiding bone tissue regeneration.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282241280771\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241280771\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241280771","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了制造电活性纤维膜,并为模仿自然界骨膜的骨再生提供模拟生物电微环境,研究人员使用氨基封端苯胺三聚体(AT)和赖氨酸衍生物作为扩链剂,合成了一系列电活性聚氨酯(PUAT)。通过电纺丝将这些 PUAT 制成纤维膜,作为引导骨组织再生膜(GBRM)。PUAT 共聚物的紫外可见吸收光谱和循环伏安法显示,电活性 PUAT 纤维膜具有良好的电活性。此外,AT的引入明显改善了PUAT纤维膜的疏水性和热稳定性,降低了PUAT纤维在体外的降解率。随着共聚物中AT含量的增加,PUAT纤维膜的拉伸强度和杨氏模量分别从4 MPa(PUAT0)和2.1 MPa(PUAT0)增加到15 MPa(PUAT10)和18 MPa(PUAT10)。大鼠间充质干细胞(rMSCs)在 PUAT 纤维上的细胞形态和增殖情况表明,AT 的加入增强了细胞的附着和增殖。此外,随着 AT 含量的增加,PUAT 纤维上大鼠间充质干细胞分泌的 OCN、CD31 和血管内皮生长因子的表达水平也有所提高。总之,通过电纺丝制备出了一种模拟天然骨膜的电活性聚氨酯纤维膜,并在指导骨组织再生方面显示出了良好的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of electrospun electroactive polyurethane membranes for bone repairing.

To fabricate electroactive fibrous membranes and provide simulated bioelectric micro-environment for bone regeneration mimicking nature periosteum, a series of electroactive polyurethanes (PUAT) were synthesized using amino-capped aniline trimers (AT) and lysine derivatives as chain extenders. These PUAT were fabricated into fibrous membranes as guided bone tissue regeneration membranes (GBRMs) via electrospinning. The ultraviolet-visible (UV-vis) absorption spectroscopy and cyclic voltammetry (CV) of PUAT copolymers showed that the electroactive PUAT fibrous membranes had good electroactivity. Besides, the introduction of AT significantly improved the hydrophobicity and thermal stability of PUAT fibrous membranes and decreased the degradation rate of PUAT fibers in vitro. With the increasing content of AT incorporated into copolymers, the tensile strength and Young's modulus of PUAT fibrous membranes increased from 4 MPa (PUAT0) to 15 MPa (PUAT10) and from 2.1 MPa (PUAT0) to 18 MPa (PUAT10), respectively. The cell morphology and proliferation of rat mesenchymal stem cells (rMSCs) on PUAT fibers indicated that the incorporation of AT enhanced the cell attachment and proliferation. Moreover, the expression levels of OCN, CD31, and VEGF secreted by rMSCs on PUAT fibers increased with the increasing content of AT. In conclusion, an electroactive polyurethane fibrous membrane mimicking natural periosteum was prepared via electrospinning and showed good potential application in guiding bone tissue regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
期刊最新文献
Monoclonal antibodies against jellyfish collagen. Citrus trifoliata extract -loaded chitosan nanoparticles as a potential treatment for osteoarthritis: An in vitro evaluation. 3D printed sodium alginate/gelatin/tannic acid/calcium chloride scaffolds laden bone marrow mesenchymal stem cells to repair defective thyroid cartilage plate. Antibacterial nonwoven materials in medicine and healthcare. A nanofibrous polycaprolactone/collagen neural guidance channel filled with sciatic allogeneic schwann cells and platelet-rich plasma for sciatic nerve repair.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1