{"title":"用于交互感知车辆轨迹预测的异构图社会池","authors":"Xiaoyu Mo , Yang Xing , Chen Lv","doi":"10.1016/j.tre.2024.103748","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting the trajectories of neighboring vehicles is vital for self-driving cars in intricate real-world driving. The challenge lies in accounting for diverse influences on a vehicle’s movement, travel needs, neighboring vehicles, and a local map. To address these factors comprehensively, we have developed a framework with a Heterogeneous Graph Social (HGS) pooling approach. The framework represents vehicles and infrastructures in a single graph, with vehicle nodes holding historical dynamics information and infrastructure nodes containing spatial features from map images. HGS captures vehicle–infrastructure interactions in urban driving. Unlike existing methods that are restricted to a fixed vehicle count and highway settings, HGS can accommodate variable interactions and road layouts. By merging all features, our approach predicts the target vehicle’s future path. Experiments on real-world data confirm HGS’s superiority, boasting quicker training and inference, affirming its feasibility, effectiveness, and efficiency.</p></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction\",\"authors\":\"Xiaoyu Mo , Yang Xing , Chen Lv\",\"doi\":\"10.1016/j.tre.2024.103748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predicting the trajectories of neighboring vehicles is vital for self-driving cars in intricate real-world driving. The challenge lies in accounting for diverse influences on a vehicle’s movement, travel needs, neighboring vehicles, and a local map. To address these factors comprehensively, we have developed a framework with a Heterogeneous Graph Social (HGS) pooling approach. The framework represents vehicles and infrastructures in a single graph, with vehicle nodes holding historical dynamics information and infrastructure nodes containing spatial features from map images. HGS captures vehicle–infrastructure interactions in urban driving. Unlike existing methods that are restricted to a fixed vehicle count and highway settings, HGS can accommodate variable interactions and road layouts. By merging all features, our approach predicts the target vehicle’s future path. Experiments on real-world data confirm HGS’s superiority, boasting quicker training and inference, affirming its feasibility, effectiveness, and efficiency.</p></div>\",\"PeriodicalId\":49418,\"journal\":{\"name\":\"Transportation Research Part E-Logistics and Transportation Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part E-Logistics and Transportation Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1366554524003399\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524003399","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction
Predicting the trajectories of neighboring vehicles is vital for self-driving cars in intricate real-world driving. The challenge lies in accounting for diverse influences on a vehicle’s movement, travel needs, neighboring vehicles, and a local map. To address these factors comprehensively, we have developed a framework with a Heterogeneous Graph Social (HGS) pooling approach. The framework represents vehicles and infrastructures in a single graph, with vehicle nodes holding historical dynamics information and infrastructure nodes containing spatial features from map images. HGS captures vehicle–infrastructure interactions in urban driving. Unlike existing methods that are restricted to a fixed vehicle count and highway settings, HGS can accommodate variable interactions and road layouts. By merging all features, our approach predicts the target vehicle’s future path. Experiments on real-world data confirm HGS’s superiority, boasting quicker training and inference, affirming its feasibility, effectiveness, and efficiency.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.