{"title":"公交地铁双层网络应对极端天气事件的复原力优化","authors":"","doi":"10.1016/j.trd.2024.104378","DOIUrl":null,"url":null,"abstract":"<div><p>The resilience of bus and metro systems to extreme weather events is a critical concern in urban planning, given their growing complexity and interconnectivity. Traditional studies often simplify or overlook the interdependency between different transportation modes, focusing on recovery strategies for a single mode to enhance system resilience. This study proposes an integrated resilience assessment framework for bus and metro systems, conceptualized as a Bus-Metro Double-Layer Network (B-M DLN). The framework considers both network structure and system function to accurately evaluate the B-M DLN resilience. A resilience optimization model for B-M DLN based on Genetic Algorithm (GA) is established to suggest the optimal recovery sequence of damaged stations, emphasizing the importance of station repair time, node strength, and node degree in recovery prioritization. Through a case analysis of Xi’an City, China, the B-M DLN shows significantly enhanced resilience when applying the optimal recovery strategy, especially in large-scale failure scenarios.</p></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience optimization of bus-metro double-layer network against extreme weather events\",\"authors\":\"\",\"doi\":\"10.1016/j.trd.2024.104378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The resilience of bus and metro systems to extreme weather events is a critical concern in urban planning, given their growing complexity and interconnectivity. Traditional studies often simplify or overlook the interdependency between different transportation modes, focusing on recovery strategies for a single mode to enhance system resilience. This study proposes an integrated resilience assessment framework for bus and metro systems, conceptualized as a Bus-Metro Double-Layer Network (B-M DLN). The framework considers both network structure and system function to accurately evaluate the B-M DLN resilience. A resilience optimization model for B-M DLN based on Genetic Algorithm (GA) is established to suggest the optimal recovery sequence of damaged stations, emphasizing the importance of station repair time, node strength, and node degree in recovery prioritization. Through a case analysis of Xi’an City, China, the B-M DLN shows significantly enhanced resilience when applying the optimal recovery strategy, especially in large-scale failure scenarios.</p></div>\",\"PeriodicalId\":23277,\"journal\":{\"name\":\"Transportation Research Part D-transport and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part D-transport and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361920924003353\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920924003353","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Resilience optimization of bus-metro double-layer network against extreme weather events
The resilience of bus and metro systems to extreme weather events is a critical concern in urban planning, given their growing complexity and interconnectivity. Traditional studies often simplify or overlook the interdependency between different transportation modes, focusing on recovery strategies for a single mode to enhance system resilience. This study proposes an integrated resilience assessment framework for bus and metro systems, conceptualized as a Bus-Metro Double-Layer Network (B-M DLN). The framework considers both network structure and system function to accurately evaluate the B-M DLN resilience. A resilience optimization model for B-M DLN based on Genetic Algorithm (GA) is established to suggest the optimal recovery sequence of damaged stations, emphasizing the importance of station repair time, node strength, and node degree in recovery prioritization. Through a case analysis of Xi’an City, China, the B-M DLN shows significantly enhanced resilience when applying the optimal recovery strategy, especially in large-scale failure scenarios.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.