{"title":"用于动态热管理的可扩展彩色杰纳斯结构方案","authors":"Sijie Pian, Zhuning Wang, Chengtao Lu, Peixuan Wu, Qikai Chen, Xu Liu, Yaoguang Ma","doi":"10.1016/j.isci.2024.110948","DOIUrl":null,"url":null,"abstract":"<p>The art of passive thermal management lies in effectively mitigating heat stress by manipulating the optical spectra of target objects. However, a significant obstacle remains in finding a structure that can seamlessly adapt to diverse thermal environments. In response to this challenge, we posit that Janus fabrics have unique advantages for multi-scene applications when carefully engineered. A Janus fabric with an upper side exhibiting a 92% solar reflectivity and a 94% emissivity, along with a lower side possessed an infrared emissivity below 30% could enable energy savings at large scale. It outperforms commercial products in terms of energy-saving efficiency under different climate conditions. Furthermore, the scalable manufacturing compatibility and outstanding performance make Janus structure a promising avenue for diverse passive thermal management scenarios.</p>","PeriodicalId":342,"journal":{"name":"iScience","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable colored Janus fabric scheme for dynamic thermal management\",\"authors\":\"Sijie Pian, Zhuning Wang, Chengtao Lu, Peixuan Wu, Qikai Chen, Xu Liu, Yaoguang Ma\",\"doi\":\"10.1016/j.isci.2024.110948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The art of passive thermal management lies in effectively mitigating heat stress by manipulating the optical spectra of target objects. However, a significant obstacle remains in finding a structure that can seamlessly adapt to diverse thermal environments. In response to this challenge, we posit that Janus fabrics have unique advantages for multi-scene applications when carefully engineered. A Janus fabric with an upper side exhibiting a 92% solar reflectivity and a 94% emissivity, along with a lower side possessed an infrared emissivity below 30% could enable energy savings at large scale. It outperforms commercial products in terms of energy-saving efficiency under different climate conditions. Furthermore, the scalable manufacturing compatibility and outstanding performance make Janus structure a promising avenue for diverse passive thermal management scenarios.</p>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isci.2024.110948\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.isci.2024.110948","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Scalable colored Janus fabric scheme for dynamic thermal management
The art of passive thermal management lies in effectively mitigating heat stress by manipulating the optical spectra of target objects. However, a significant obstacle remains in finding a structure that can seamlessly adapt to diverse thermal environments. In response to this challenge, we posit that Janus fabrics have unique advantages for multi-scene applications when carefully engineered. A Janus fabric with an upper side exhibiting a 92% solar reflectivity and a 94% emissivity, along with a lower side possessed an infrared emissivity below 30% could enable energy savings at large scale. It outperforms commercial products in terms of energy-saving efficiency under different climate conditions. Furthermore, the scalable manufacturing compatibility and outstanding performance make Janus structure a promising avenue for diverse passive thermal management scenarios.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.