2022 年 NIST 增材制造基准 (AM-Bench) 测试系列的多物理场建模

IF 3.7 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Mechanics Pub Date : 2024-08-13 DOI:10.1007/s00466-024-02532-x
Qiming Zhu, Ze Zhao, Jinhui Yan
{"title":"2022 年 NIST 增材制造基准 (AM-Bench) 测试系列的多物理场建模","authors":"Qiming Zhu, Ze Zhao, Jinhui Yan","doi":"10.1007/s00466-024-02532-x","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an effective high-fidelity multi-physics model for metal additive manufacturing (AM). Using a mixed interface-capturing/interface-tracking approach, the model integrates level set and variational multiscale formulation for thermal multi-phase flows and explicitly handles the gas-metal interface evolution without mesh motion and re-meshing schemes. We integrate the mixed formulation with an energy-conservative ray tracing-based laser model and a mass-fixing algorithm that accounts for phase transitions. First, we present the mathematical details of the proposed model. Then, we apply the model to simulate the NIST A-AMB2022-01 Benchmark test, emphasizing the prediction of thermal history, laser absorption rate, melt pool dimensions, and pore formation. The results show the model’s strong capability to accurately capture the complex physics of metal AM processes and its potential in simulation-based process optimization.\n</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"264 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-physics modeling of the 2022 NIST additive manufacturing benchmark (AM-Bench) test series\",\"authors\":\"Qiming Zhu, Ze Zhao, Jinhui Yan\",\"doi\":\"10.1007/s00466-024-02532-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents an effective high-fidelity multi-physics model for metal additive manufacturing (AM). Using a mixed interface-capturing/interface-tracking approach, the model integrates level set and variational multiscale formulation for thermal multi-phase flows and explicitly handles the gas-metal interface evolution without mesh motion and re-meshing schemes. We integrate the mixed formulation with an energy-conservative ray tracing-based laser model and a mass-fixing algorithm that accounts for phase transitions. First, we present the mathematical details of the proposed model. Then, we apply the model to simulate the NIST A-AMB2022-01 Benchmark test, emphasizing the prediction of thermal history, laser absorption rate, melt pool dimensions, and pore formation. The results show the model’s strong capability to accurately capture the complex physics of metal AM processes and its potential in simulation-based process optimization.\\n</p>\",\"PeriodicalId\":55248,\"journal\":{\"name\":\"Computational Mechanics\",\"volume\":\"264 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00466-024-02532-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02532-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对金属增材制造(AM)提出了一种有效的高保真多物理场模型。该模型采用界面捕捉/界面跟踪混合方法,整合了热多相流的水平集和可变多尺度公式,并在没有网格运动和重网格方案的情况下明确处理气体-金属界面演变。我们将混合公式与基于能量守恒光线跟踪的激光模型和考虑相变的质量固定算法相结合。首先,我们介绍了拟议模型的数学细节。然后,我们应用该模型模拟了 NIST A-AMB2022-01 基准测试,重点预测了热历史、激光吸收率、熔池尺寸和孔隙形成。结果表明,该模型具有准确捕捉金属 AM 过程复杂物理现象的强大能力,以及在基于模拟的过程优化方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-physics modeling of the 2022 NIST additive manufacturing benchmark (AM-Bench) test series

This paper presents an effective high-fidelity multi-physics model for metal additive manufacturing (AM). Using a mixed interface-capturing/interface-tracking approach, the model integrates level set and variational multiscale formulation for thermal multi-phase flows and explicitly handles the gas-metal interface evolution without mesh motion and re-meshing schemes. We integrate the mixed formulation with an energy-conservative ray tracing-based laser model and a mass-fixing algorithm that accounts for phase transitions. First, we present the mathematical details of the proposed model. Then, we apply the model to simulate the NIST A-AMB2022-01 Benchmark test, emphasizing the prediction of thermal history, laser absorption rate, melt pool dimensions, and pore formation. The results show the model’s strong capability to accurately capture the complex physics of metal AM processes and its potential in simulation-based process optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mechanics
Computational Mechanics 物理-力学
CiteScore
7.80
自引率
12.20%
发文量
122
审稿时长
3.4 months
期刊介绍: The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies. Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged. Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.
期刊最新文献
An improved thermomechanical model for the prediction of stress and strain evolution in proximity to the melt pool in powder bed fusion additive manufacturing A consistent discretization via the finite radon transform for FFT-based computational micromechanics On the use of scaled boundary shape functions in adaptive phase field modeling of brittle fracture Efficient and accurate analysis of locally resonant acoustic metamaterial plates using computational homogenization Modeling cellular self-organization in strain-stiffening hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1