Chang Ye, Kezheng Jiang, Junjie Wu, Mingye Sun, Xiaotong Ji, Dan Liu
{"title":"基于 NPU 算法的光伏储能系统静态电压稳定性分析","authors":"Chang Ye, Kezheng Jiang, Junjie Wu, Mingye Sun, Xiaotong Ji, Dan Liu","doi":"10.3389/fenrg.2024.1443677","DOIUrl":null,"url":null,"abstract":"Although the data-driven static voltage stability problems have been widely studied, most of the classical algorithms focus more on improving the accuracy of the system prediction, ignoring the error classification errors generated during the prediction process. Furthermore, current research ignores the utilization of data-driven voltage stability assessment of energy storage systems. Therefore, this paper proposes a static voltage stability assessment method for photovoltaic energy storage systems based on considering the error classification constraint algorithm using Neyman-Pearson umbrella algorithms. Firstly, the Spearman Correlation Coefficient is employed in the feature selection phase. Secondly, an updated voltage stability assessment (VSA) model is proposed. Compared with the existing data-driven prediction of system static voltage stability in the literature, it can realize voltage stability assessment more quickly. Furthermore, on the basis of rapid voltage stability assessment, the umbrella NP classifier can also effectively limit the first-class error and attenuate the effect of error classification by mirroring the control of the number of cycle splits and the type <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi mathvariant=\"bold\">I</mml:mi></mml:math></jats:inline-formula> classification error threshold. Finally, the simulation and experimental results show that the effectiveness and robustness of the scheme proposed in this paper in grid-connected photovoltaic energy farms.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":"97 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The static voltage stability analysis of photovoltaic energy storage systems based on NPU algorithm\",\"authors\":\"Chang Ye, Kezheng Jiang, Junjie Wu, Mingye Sun, Xiaotong Ji, Dan Liu\",\"doi\":\"10.3389/fenrg.2024.1443677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the data-driven static voltage stability problems have been widely studied, most of the classical algorithms focus more on improving the accuracy of the system prediction, ignoring the error classification errors generated during the prediction process. Furthermore, current research ignores the utilization of data-driven voltage stability assessment of energy storage systems. Therefore, this paper proposes a static voltage stability assessment method for photovoltaic energy storage systems based on considering the error classification constraint algorithm using Neyman-Pearson umbrella algorithms. Firstly, the Spearman Correlation Coefficient is employed in the feature selection phase. Secondly, an updated voltage stability assessment (VSA) model is proposed. Compared with the existing data-driven prediction of system static voltage stability in the literature, it can realize voltage stability assessment more quickly. Furthermore, on the basis of rapid voltage stability assessment, the umbrella NP classifier can also effectively limit the first-class error and attenuate the effect of error classification by mirroring the control of the number of cycle splits and the type <jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mi mathvariant=\\\"bold\\\">I</mml:mi></mml:math></jats:inline-formula> classification error threshold. Finally, the simulation and experimental results show that the effectiveness and robustness of the scheme proposed in this paper in grid-connected photovoltaic energy farms.\",\"PeriodicalId\":12428,\"journal\":{\"name\":\"Frontiers in Energy Research\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fenrg.2024.1443677\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1443677","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
尽管数据驱动的静态电压稳定性问题已被广泛研究,但大多数经典算法更侧重于提高系统预测的准确性,而忽略了预测过程中产生的误差分类误差。此外,目前的研究还忽略了利用数据驱动对储能系统进行电压稳定性评估。因此,本文在考虑误差分类约束算法的基础上,利用 Neyman-Pearson 伞形算法提出了一种光伏储能系统静态电压稳定性评估方法。首先,在特征选择阶段采用斯皮尔曼相关系数。其次,提出了更新的电压稳定性评估(VSA)模型。与现有文献中数据驱动的系统静态电压稳定性预测相比,它能更快地实现电压稳定性评估。此外,在快速电压稳定性评估的基础上,伞状 NP 分类器还能通过镜像控制周期分裂数和 I 类分类误差阈值,有效限制一等误差,削弱误差分类的效果。最后,仿真和实验结果表明,本文提出的方案在光伏并网发电场中具有有效性和鲁棒性。
The static voltage stability analysis of photovoltaic energy storage systems based on NPU algorithm
Although the data-driven static voltage stability problems have been widely studied, most of the classical algorithms focus more on improving the accuracy of the system prediction, ignoring the error classification errors generated during the prediction process. Furthermore, current research ignores the utilization of data-driven voltage stability assessment of energy storage systems. Therefore, this paper proposes a static voltage stability assessment method for photovoltaic energy storage systems based on considering the error classification constraint algorithm using Neyman-Pearson umbrella algorithms. Firstly, the Spearman Correlation Coefficient is employed in the feature selection phase. Secondly, an updated voltage stability assessment (VSA) model is proposed. Compared with the existing data-driven prediction of system static voltage stability in the literature, it can realize voltage stability assessment more quickly. Furthermore, on the basis of rapid voltage stability assessment, the umbrella NP classifier can also effectively limit the first-class error and attenuate the effect of error classification by mirroring the control of the number of cycle splits and the type I classification error threshold. Finally, the simulation and experimental results show that the effectiveness and robustness of the scheme proposed in this paper in grid-connected photovoltaic energy farms.
期刊介绍:
Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria