基于简化电化学模型和 TSO-TCN 的锂离子电池剩余使用寿命预测

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY Journal of The Electrochemical Society Pub Date : 2024-09-02 DOI:10.1149/1945-7111/ad728f
Chen Lin, Dongjiang Yang, Zhongkai Zhou
{"title":"基于简化电化学模型和 TSO-TCN 的锂离子电池剩余使用寿命预测","authors":"Chen Lin, Dongjiang Yang, Zhongkai Zhou","doi":"10.1149/1945-7111/ad728f","DOIUrl":null,"url":null,"abstract":"Accurate prediction of the remaining useful life (RUL) of lithium-ion battery is critical in practical applications, but is challenging due to the presence of multiple aging pathways and nonlinear degradation mechanisms. In this paper, a method for RUL prediction is proposed combined with battery capacity aging mechanism based on transient search optimization (TSO)-temporal convolutional network (TCN) algorithm. First, the particle swarm optimization algorithm is used to derive three health indicators directly related to capacity loss from a simplified electrochemical model. Then, the TCN parameters are optimized with transient search algorithm to obtain the optimal prediction model. Finally, the RUL prediction are compared with other typical algorithms, and the results show that the proposed method can accurately predict the RUL of lithium-ion battery, and the life prediction error is within 10 cycles. Compared to TCN, the prediction results remain accurate even with less training data, and the error metrics are reduced by about 50% with the maximum error only 7 cycles from the 250th charge/discharge cycle.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"29 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Simplified Electrochemical Model and TSO-TCN\",\"authors\":\"Chen Lin, Dongjiang Yang, Zhongkai Zhou\",\"doi\":\"10.1149/1945-7111/ad728f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of the remaining useful life (RUL) of lithium-ion battery is critical in practical applications, but is challenging due to the presence of multiple aging pathways and nonlinear degradation mechanisms. In this paper, a method for RUL prediction is proposed combined with battery capacity aging mechanism based on transient search optimization (TSO)-temporal convolutional network (TCN) algorithm. First, the particle swarm optimization algorithm is used to derive three health indicators directly related to capacity loss from a simplified electrochemical model. Then, the TCN parameters are optimized with transient search algorithm to obtain the optimal prediction model. Finally, the RUL prediction are compared with other typical algorithms, and the results show that the proposed method can accurately predict the RUL of lithium-ion battery, and the life prediction error is within 10 cycles. Compared to TCN, the prediction results remain accurate even with less training data, and the error metrics are reduced by about 50% with the maximum error only 7 cycles from the 250th charge/discharge cycle.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad728f\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad728f","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

准确预测锂离子电池的剩余使用寿命(RUL)在实际应用中至关重要,但由于存在多种老化途径和非线性降解机制,因此具有挑战性。本文基于瞬态搜索优化(TSO)-时态卷积网络(TCN)算法,提出了一种结合电池容量老化机制的 RUL 预测方法。首先,使用粒子群优化算法从简化的电化学模型中推导出与容量损失直接相关的三个健康指标。然后,使用瞬态搜索算法优化 TCN 参数,以获得最佳预测模型。最后,将 RUL 预测结果与其他典型算法进行比较,结果表明所提出的方法能准确预测锂离子电池的 RUL,且寿命预测误差在 10 个循环以内。与 TCN 相比,即使训练数据较少,预测结果仍然准确,误差指标减少了约 50%,最大误差仅为第 250 次充放电循环的 7 个循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Simplified Electrochemical Model and TSO-TCN
Accurate prediction of the remaining useful life (RUL) of lithium-ion battery is critical in practical applications, but is challenging due to the presence of multiple aging pathways and nonlinear degradation mechanisms. In this paper, a method for RUL prediction is proposed combined with battery capacity aging mechanism based on transient search optimization (TSO)-temporal convolutional network (TCN) algorithm. First, the particle swarm optimization algorithm is used to derive three health indicators directly related to capacity loss from a simplified electrochemical model. Then, the TCN parameters are optimized with transient search algorithm to obtain the optimal prediction model. Finally, the RUL prediction are compared with other typical algorithms, and the results show that the proposed method can accurately predict the RUL of lithium-ion battery, and the life prediction error is within 10 cycles. Compared to TCN, the prediction results remain accurate even with less training data, and the error metrics are reduced by about 50% with the maximum error only 7 cycles from the 250th charge/discharge cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
期刊最新文献
Electrochemical HOCl Production Modeling for an Electrochemical Catheter. Comprehensive Analysis of Commercial Sodium-Ion Batteries: Structural and Electrochemical Insights Electrochemical Behaviour of Nickel(II)-Rhenium(VII) And Electrodeposition of Nickel-Rhenium Alloy from Choline Chloride - Urea Deep Eutectic Solvent Optimization of Post-Annealing Temperature of RF Magnetron-Sputtered ZnO Thin Films for Enhancing Performances of UV Photodetectors Spatially Resolved Assessment and Analysis of Al-Zn, Mg, and Mg/Al-Zn Metal-Rich Primers Applied to AA 7075-T651 in Full Immersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1