传统和新兴技术中的伊辛机综述

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2024-09-10 DOI:10.1109/TNANO.2024.3457533
Tingting Zhang;Qichao Tao;Bailiang Liu;Andrea Grimaldi;Eleonora Raimondo;Manuel Jiménez;María José Avedillo;Juan Nuñez;Bernabé Linares-Barranco;Teresa Serrano-Gotarredona;Giovanni Finocchio;Jie Han
{"title":"传统和新兴技术中的伊辛机综述","authors":"Tingting Zhang;Qichao Tao;Bailiang Liu;Andrea Grimaldi;Eleonora Raimondo;Manuel Jiménez;María José Avedillo;Juan Nuñez;Bernabé Linares-Barranco;Teresa Serrano-Gotarredona;Giovanni Finocchio;Jie Han","doi":"10.1109/TNANO.2024.3457533","DOIUrl":null,"url":null,"abstract":"Ising machines have received growing interest as efficient and hardware-friendly solvers for combinatorial optimization problems (COPs). They search for the absolute or approximate ground states of the Ising model with a proper annealing process. In contrast to Ising machines built with superconductive or optical circuits, complementary metal-oxide-semiconductor (CMOS) Ising machines offer inexpensive fabrication, high scalability, and easy integration with mainstream semiconductor chips. As low-energy and CMOS-compatible emerging technologies, spintronics and phase-transition devices offer functionalities that can enhance the scalability and sampling performance of Ising machines. In this article, we survey various approaches in the process flow for solving COPs using CMOS, hybrid CMOS-spintronic, and phase-transition devices. First, the methods for formulating COPs as Ising problems and embedding Ising formulations to the topology of the Ising machine are reviewed. Then, Ising machines are classified by their underlying operational principles and reviewed from a perspective of hardware implementation. CMOS solutions are advantageous with denser connectivity, whereas hybrid CMOS-spintronic and phase-transition device-based solutions show great potential in energy efficiency and high performance. Finally, the challenges and prospects are discussed for the Ising formulation, embedding process, and implementation of Ising machines.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"704-717"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Ising Machines Implemented in Conventional and Emerging Technologies\",\"authors\":\"Tingting Zhang;Qichao Tao;Bailiang Liu;Andrea Grimaldi;Eleonora Raimondo;Manuel Jiménez;María José Avedillo;Juan Nuñez;Bernabé Linares-Barranco;Teresa Serrano-Gotarredona;Giovanni Finocchio;Jie Han\",\"doi\":\"10.1109/TNANO.2024.3457533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ising machines have received growing interest as efficient and hardware-friendly solvers for combinatorial optimization problems (COPs). They search for the absolute or approximate ground states of the Ising model with a proper annealing process. In contrast to Ising machines built with superconductive or optical circuits, complementary metal-oxide-semiconductor (CMOS) Ising machines offer inexpensive fabrication, high scalability, and easy integration with mainstream semiconductor chips. As low-energy and CMOS-compatible emerging technologies, spintronics and phase-transition devices offer functionalities that can enhance the scalability and sampling performance of Ising machines. In this article, we survey various approaches in the process flow for solving COPs using CMOS, hybrid CMOS-spintronic, and phase-transition devices. First, the methods for formulating COPs as Ising problems and embedding Ising formulations to the topology of the Ising machine are reviewed. Then, Ising machines are classified by their underlying operational principles and reviewed from a perspective of hardware implementation. CMOS solutions are advantageous with denser connectivity, whereas hybrid CMOS-spintronic and phase-transition device-based solutions show great potential in energy efficiency and high performance. Finally, the challenges and prospects are discussed for the Ising formulation, embedding process, and implementation of Ising machines.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"704-717\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10670493/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10670493/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

作为组合优化问题(COPs)的高效且硬件友好的求解器,伊辛机受到越来越多的关注。它们通过适当的退火过程来搜索伊辛模型的绝对或近似基态。与采用超导或光学电路制造的伊辛机相比,互补金属氧化物半导体(CMOS)伊辛机具有制造成本低、可扩展性强、易于与主流半导体芯片集成等优点。作为低能耗且与 CMOS 兼容的新兴技术,自旋电子学和相位转换器件提供的功能可提高伊兴机的可扩展性和采样性能。在本文中,我们将探讨使用 CMOS、混合 CMOS-自旋电子和相位转换器件解决 COP 的工艺流程中的各种方法。首先,我们回顾了将 COP 表述为 Ising 问题以及将 Ising 表述嵌入 Ising 机器拓扑的方法。然后,根据其基本运行原理对伊辛机进行分类,并从硬件实现的角度进行评述。CMOS 解决方案在密集连接方面具有优势,而基于 CMOS-Spinronic 和相位转换器件的混合解决方案则在能效和高性能方面显示出巨大潜力。最后,还讨论了伊辛公式、嵌入过程和伊辛机的实现所面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of Ising Machines Implemented in Conventional and Emerging Technologies
Ising machines have received growing interest as efficient and hardware-friendly solvers for combinatorial optimization problems (COPs). They search for the absolute or approximate ground states of the Ising model with a proper annealing process. In contrast to Ising machines built with superconductive or optical circuits, complementary metal-oxide-semiconductor (CMOS) Ising machines offer inexpensive fabrication, high scalability, and easy integration with mainstream semiconductor chips. As low-energy and CMOS-compatible emerging technologies, spintronics and phase-transition devices offer functionalities that can enhance the scalability and sampling performance of Ising machines. In this article, we survey various approaches in the process flow for solving COPs using CMOS, hybrid CMOS-spintronic, and phase-transition devices. First, the methods for formulating COPs as Ising problems and embedding Ising formulations to the topology of the Ising machine are reviewed. Then, Ising machines are classified by their underlying operational principles and reviewed from a perspective of hardware implementation. CMOS solutions are advantageous with denser connectivity, whereas hybrid CMOS-spintronic and phase-transition device-based solutions show great potential in energy efficiency and high performance. Finally, the challenges and prospects are discussed for the Ising formulation, embedding process, and implementation of Ising machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory Full 3-D Monte Carlo Simulation of Coupled Electron-Phonon Transport: Self-Heating in a Nanoscale FinFET Experimental Investigations and Characterization of Surfactant Activated Mixed Metal Oxide (MMO) Nanomaterial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1