Thomas Bland, Francesca Ferlaino, Massimo Mannarelli, Elena Poli, Silvia Trabucco
{"title":"用双极超固体探索脉冲星闪烁","authors":"Thomas Bland, Francesca Ferlaino, Massimo Mannarelli, Elena Poli, Silvia Trabucco","doi":"10.1007/s00601-024-01949-7","DOIUrl":null,"url":null,"abstract":"<div><p>Glitches are sudden spin-up events that interrupt the gradual spin-down of rotating neutron stars. They are believed to arise from the rapid unpinning of vortices in the neutron star inner crust. The analogy between the inner crust of neutron stars and dipolar supersolids allows to investigate glitches. Employing such analogy, we numerically analyze the vortex trapping mechanism and how the matter density distribution influences glitches. These results pave the way for the quantum simulation of celestial bodies in laboratories.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Pulsar Glitches with Dipolar Supersolids\",\"authors\":\"Thomas Bland, Francesca Ferlaino, Massimo Mannarelli, Elena Poli, Silvia Trabucco\",\"doi\":\"10.1007/s00601-024-01949-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glitches are sudden spin-up events that interrupt the gradual spin-down of rotating neutron stars. They are believed to arise from the rapid unpinning of vortices in the neutron star inner crust. The analogy between the inner crust of neutron stars and dipolar supersolids allows to investigate glitches. Employing such analogy, we numerically analyze the vortex trapping mechanism and how the matter density distribution influences glitches. These results pave the way for the quantum simulation of celestial bodies in laboratories.</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-024-01949-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01949-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring Pulsar Glitches with Dipolar Supersolids
Glitches are sudden spin-up events that interrupt the gradual spin-down of rotating neutron stars. They are believed to arise from the rapid unpinning of vortices in the neutron star inner crust. The analogy between the inner crust of neutron stars and dipolar supersolids allows to investigate glitches. Employing such analogy, we numerically analyze the vortex trapping mechanism and how the matter density distribution influences glitches. These results pave the way for the quantum simulation of celestial bodies in laboratories.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).