Gehad Ali , Reem Mahmoud , Mohamed Wafeek , Moataz M.K. Yousef , Sameh O. Abdellatif
{"title":"微调用于传感应用的氯化铯铅过氧化物场效应晶体管:连接数值建模与实验验证","authors":"Gehad Ali , Reem Mahmoud , Mohamed Wafeek , Moataz M.K. Yousef , Sameh O. Abdellatif","doi":"10.1016/j.sse.2024.109004","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive approach to fine-tuning Cesium Lead Chloride Perovskite Field-Effect Transistors (CsPbCl<sub>3</sub>-FETs) for sensing applications by bridging numerical modeling with experimental validation. By combining finite element methods in COMSOL Multiphysics for optimization, we tailored FET parameters such as oxide and perovskite thin film thickness. The fabricated FET, with a 200 nm semiconductor layer and 30 nm oxide thickness, was strategically chosen to operate in a non-depletion mode, maximizing mobility while minimizing power consumption. Experimental results closely aligned with numerical simulations, showcasing a threshold voltage of 0.50 V±0.07 V and an impressive on/off current ratio of 1.50 x 10<sup>4</sup> ± 0.3 x 10<sup>4</sup>. Notably, the perovskite FET exhibited remarkable carrier mobility in saturation mode, reaching 5.40 cm<sup>2</sup>/V-s ± 0.8 cm<sup>2</sup>/V-s, outperforming other attempts in the literature. This work underscores the potential of CsPbCl<sub>3</sub> FETs for high-performance sensing applications, offering insights into optimizing device parameters for enhanced functionality and efficiency.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"221 ","pages":"Article 109004"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-tuning Cesium lead chloride perovskite field-effect transistors for sensing applications: Bridging numerical modeling and experimental validation\",\"authors\":\"Gehad Ali , Reem Mahmoud , Mohamed Wafeek , Moataz M.K. Yousef , Sameh O. Abdellatif\",\"doi\":\"10.1016/j.sse.2024.109004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a comprehensive approach to fine-tuning Cesium Lead Chloride Perovskite Field-Effect Transistors (CsPbCl<sub>3</sub>-FETs) for sensing applications by bridging numerical modeling with experimental validation. By combining finite element methods in COMSOL Multiphysics for optimization, we tailored FET parameters such as oxide and perovskite thin film thickness. The fabricated FET, with a 200 nm semiconductor layer and 30 nm oxide thickness, was strategically chosen to operate in a non-depletion mode, maximizing mobility while minimizing power consumption. Experimental results closely aligned with numerical simulations, showcasing a threshold voltage of 0.50 V±0.07 V and an impressive on/off current ratio of 1.50 x 10<sup>4</sup> ± 0.3 x 10<sup>4</sup>. Notably, the perovskite FET exhibited remarkable carrier mobility in saturation mode, reaching 5.40 cm<sup>2</sup>/V-s ± 0.8 cm<sup>2</sup>/V-s, outperforming other attempts in the literature. This work underscores the potential of CsPbCl<sub>3</sub> FETs for high-performance sensing applications, offering insights into optimizing device parameters for enhanced functionality and efficiency.</p></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"221 \",\"pages\":\"Article 109004\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110124001539\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001539","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种综合方法,通过将数值建模与实验验证相结合,对用于传感应用的氯化铯铅包晶石场效应晶体管(CsPbCl3-FET)进行微调。通过结合 COMSOL Multiphysics 中的有限元方法进行优化,我们定制了场效应晶体管参数,如氧化物和包晶体薄膜厚度。制造的场效应晶体管具有 200 nm 的半导体层和 30 nm 的氧化物厚度,我们战略性地选择了在非耗尽模式下工作,从而在最大限度地提高迁移率的同时最大限度地降低功耗。实验结果与数值模拟紧密吻合,阈值电压为 0.50 V±0.07 V,导通/关断电流比为 1.50 x 104 ± 0.3 x 104,令人印象深刻。值得注意的是,这种过氧化物场效应晶体管在饱和模式下表现出显著的载流子迁移率,达到 5.40 cm2/V-s ± 0.8 cm2/V-s,优于文献中的其他尝试。这项研究强调了 CsPbCl3 FET 在高性能传感应用方面的潜力,为优化器件参数以增强功能和效率提供了启示。
Fine-tuning Cesium lead chloride perovskite field-effect transistors for sensing applications: Bridging numerical modeling and experimental validation
This study presents a comprehensive approach to fine-tuning Cesium Lead Chloride Perovskite Field-Effect Transistors (CsPbCl3-FETs) for sensing applications by bridging numerical modeling with experimental validation. By combining finite element methods in COMSOL Multiphysics for optimization, we tailored FET parameters such as oxide and perovskite thin film thickness. The fabricated FET, with a 200 nm semiconductor layer and 30 nm oxide thickness, was strategically chosen to operate in a non-depletion mode, maximizing mobility while minimizing power consumption. Experimental results closely aligned with numerical simulations, showcasing a threshold voltage of 0.50 V±0.07 V and an impressive on/off current ratio of 1.50 x 104 ± 0.3 x 104. Notably, the perovskite FET exhibited remarkable carrier mobility in saturation mode, reaching 5.40 cm2/V-s ± 0.8 cm2/V-s, outperforming other attempts in the literature. This work underscores the potential of CsPbCl3 FETs for high-performance sensing applications, offering insights into optimizing device parameters for enhanced functionality and efficiency.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.