{"title":"利用超声波微加工技术制造用于先进封装应用的氧化铝通孔 (TAV)","authors":"","doi":"10.1016/j.mssp.2024.108923","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents the fabrication of a high aspect ratio through alumina-vias (TAV) by combining ultrasonic micromachining (USM), electroless plating, and copper electrodeposition. Various horn designs, i.e., tapered, stepped, exponential, and hybrid horns, were analyzed to achieve a uniform longitudinal vibration in a 6 × 6 multi-tip tool assembly. The modal analysis determined the horn length, and harmonic analysis provided the stress distribution and vibrational amplitude. The tapered horn design was selected for its superior vibration amplification and reduced stresses. Finite element modeling predicted the geometric profiles of the microvias at various USM parameters. Experimental validation showed less than 5 % error in the depths of the microvias. Using the optimized USM parameters, a 6 × 6 array of blind and through-holes was created in a 3 mm thick alumina substrate with an average feed rate of 180 μm/min. The average tool wear was observed to be 0.5 mm when drilling through 3 mm thick alumina. Electroless deposition created a ∼100 nm seed layer on the alumina substrate and achieved good adhesion with via sidewalls. The through-holes were partially filled with a 60 μm thick copper layer by electrodeposition to create through-alumina vias (TAV) that can be used as 3D interconnects in the packaging of high-power electronics.</p></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of through alumina vias (TAV) by ultrasonic micromachining for advanced packaging applications\",\"authors\":\"\",\"doi\":\"10.1016/j.mssp.2024.108923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents the fabrication of a high aspect ratio through alumina-vias (TAV) by combining ultrasonic micromachining (USM), electroless plating, and copper electrodeposition. Various horn designs, i.e., tapered, stepped, exponential, and hybrid horns, were analyzed to achieve a uniform longitudinal vibration in a 6 × 6 multi-tip tool assembly. The modal analysis determined the horn length, and harmonic analysis provided the stress distribution and vibrational amplitude. The tapered horn design was selected for its superior vibration amplification and reduced stresses. Finite element modeling predicted the geometric profiles of the microvias at various USM parameters. Experimental validation showed less than 5 % error in the depths of the microvias. Using the optimized USM parameters, a 6 × 6 array of blind and through-holes was created in a 3 mm thick alumina substrate with an average feed rate of 180 μm/min. The average tool wear was observed to be 0.5 mm when drilling through 3 mm thick alumina. Electroless deposition created a ∼100 nm seed layer on the alumina substrate and achieved good adhesion with via sidewalls. The through-holes were partially filled with a 60 μm thick copper layer by electrodeposition to create through-alumina vias (TAV) that can be used as 3D interconnects in the packaging of high-power electronics.</p></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800124008199\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124008199","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fabrication of through alumina vias (TAV) by ultrasonic micromachining for advanced packaging applications
This article presents the fabrication of a high aspect ratio through alumina-vias (TAV) by combining ultrasonic micromachining (USM), electroless plating, and copper electrodeposition. Various horn designs, i.e., tapered, stepped, exponential, and hybrid horns, were analyzed to achieve a uniform longitudinal vibration in a 6 × 6 multi-tip tool assembly. The modal analysis determined the horn length, and harmonic analysis provided the stress distribution and vibrational amplitude. The tapered horn design was selected for its superior vibration amplification and reduced stresses. Finite element modeling predicted the geometric profiles of the microvias at various USM parameters. Experimental validation showed less than 5 % error in the depths of the microvias. Using the optimized USM parameters, a 6 × 6 array of blind and through-holes was created in a 3 mm thick alumina substrate with an average feed rate of 180 μm/min. The average tool wear was observed to be 0.5 mm when drilling through 3 mm thick alumina. Electroless deposition created a ∼100 nm seed layer on the alumina substrate and achieved good adhesion with via sidewalls. The through-holes were partially filled with a 60 μm thick copper layer by electrodeposition to create through-alumina vias (TAV) that can be used as 3D interconnects in the packaging of high-power electronics.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.