Lander Manrique, Mahmoud S. Moussa, Muhammad Talal Khan, Kawkab Tahboub, Robert O. Ritchie, Meisam Asgari, Elizabeth A. Zimmermann
{"title":"利用同步辐射 X 射线散射研究的系统回顾和荟萃分析研究胶原基组织的变形","authors":"Lander Manrique, Mahmoud S. Moussa, Muhammad Talal Khan, Kawkab Tahboub, Robert O. Ritchie, Meisam Asgari, Elizabeth A. Zimmermann","doi":"10.1016/j.xcrp.2024.102212","DOIUrl":null,"url":null,"abstract":"<p>Collagen fibrils are the building blocks of many tissues from fish scales and tendons to bone. Synchrotron small-angle X-ray scattering (SAXS) with <em>in situ</em> mechanical testing is a powerful tool to investigate collagen fibril deformation. There is a need to combine data from SAXS studies to investigate structure-function relationships. A literature search used the concepts of mechanical properties, collagen, and SAXS, with 52 articles meeting the eligibility criteria. Here, we report that mineralized tissues transfer a greater proportion of tissue-scale deformation to the fibril: 67% for cortical bone, 49% for tendon, 10% for ligament, and 3% for skin. Across non-mineralized tissues, tissues with less complexity and greater elastin content transfer less deformation to the fibril. The meta-analysis finds 20%–40% lower fibril strain in human aging and disease compared to controls, which contributes toward fracture risk. This synthesis demonstrates how variations in composition and structure tune material properties in collagen-based tissues.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"20 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies\",\"authors\":\"Lander Manrique, Mahmoud S. Moussa, Muhammad Talal Khan, Kawkab Tahboub, Robert O. Ritchie, Meisam Asgari, Elizabeth A. Zimmermann\",\"doi\":\"10.1016/j.xcrp.2024.102212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Collagen fibrils are the building blocks of many tissues from fish scales and tendons to bone. Synchrotron small-angle X-ray scattering (SAXS) with <em>in situ</em> mechanical testing is a powerful tool to investigate collagen fibril deformation. There is a need to combine data from SAXS studies to investigate structure-function relationships. A literature search used the concepts of mechanical properties, collagen, and SAXS, with 52 articles meeting the eligibility criteria. Here, we report that mineralized tissues transfer a greater proportion of tissue-scale deformation to the fibril: 67% for cortical bone, 49% for tendon, 10% for ligament, and 3% for skin. Across non-mineralized tissues, tissues with less complexity and greater elastin content transfer less deformation to the fibril. The meta-analysis finds 20%–40% lower fibril strain in human aging and disease compared to controls, which contributes toward fracture risk. This synthesis demonstrates how variations in composition and structure tune material properties in collagen-based tissues.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102212\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102212","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies
Collagen fibrils are the building blocks of many tissues from fish scales and tendons to bone. Synchrotron small-angle X-ray scattering (SAXS) with in situ mechanical testing is a powerful tool to investigate collagen fibril deformation. There is a need to combine data from SAXS studies to investigate structure-function relationships. A literature search used the concepts of mechanical properties, collagen, and SAXS, with 52 articles meeting the eligibility criteria. Here, we report that mineralized tissues transfer a greater proportion of tissue-scale deformation to the fibril: 67% for cortical bone, 49% for tendon, 10% for ligament, and 3% for skin. Across non-mineralized tissues, tissues with less complexity and greater elastin content transfer less deformation to the fibril. The meta-analysis finds 20%–40% lower fibril strain in human aging and disease compared to controls, which contributes toward fracture risk. This synthesis demonstrates how variations in composition and structure tune material properties in collagen-based tissues.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.