在线语言处理中预期和反应能力的通用测量方法

Mario Giulianelli, Andreas Opedal, Ryan Cotterell
{"title":"在线语言处理中预期和反应能力的通用测量方法","authors":"Mario Giulianelli, Andreas Opedal, Ryan Cotterell","doi":"arxiv-2409.10728","DOIUrl":null,"url":null,"abstract":"We introduce a generalization of classic information-theoretic measures of\npredictive uncertainty in online language processing, based on the simulation\nof expected continuations of incremental linguistic contexts. Our framework\nprovides a formal definition of anticipatory and responsive measures, and it\nequips experimenters with the tools to define new, more expressive measures\nbeyond standard next-symbol entropy and surprisal. While extracting these\nstandard quantities from language models is convenient, we demonstrate that\nusing Monte Carlo simulation to estimate alternative responsive and\nanticipatory measures pays off empirically: New special cases of our\ngeneralized formula exhibit enhanced predictive power compared to surprisal for\nhuman cloze completion probability as well as ELAN, LAN, and N400 amplitudes,\nand greater complementarity with surprisal in predicting reading times.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Measures of Anticipation and Responsivity in Online Language Processing\",\"authors\":\"Mario Giulianelli, Andreas Opedal, Ryan Cotterell\",\"doi\":\"arxiv-2409.10728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a generalization of classic information-theoretic measures of\\npredictive uncertainty in online language processing, based on the simulation\\nof expected continuations of incremental linguistic contexts. Our framework\\nprovides a formal definition of anticipatory and responsive measures, and it\\nequips experimenters with the tools to define new, more expressive measures\\nbeyond standard next-symbol entropy and surprisal. While extracting these\\nstandard quantities from language models is convenient, we demonstrate that\\nusing Monte Carlo simulation to estimate alternative responsive and\\nanticipatory measures pays off empirically: New special cases of our\\ngeneralized formula exhibit enhanced predictive power compared to surprisal for\\nhuman cloze completion probability as well as ELAN, LAN, and N400 amplitudes,\\nand greater complementarity with surprisal in predicting reading times.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们基于对增量语言上下文预期连续性的模拟,对在线语言处理中预测不确定性的经典信息论测量方法进行了概括。我们的框架提供了预测性和反应性测量的正式定义,并为实验人员提供了工具,以定义标准下一符号熵和惊奇度之外新的、更具表现力的测量。虽然从语言模型中提取这些标准量很方便,但我们证明,使用蒙特卡罗模拟来估算其他反应性和预期性量度在实证上是有效的:与惊奇相比,我们的通用公式的新特例在预测人类掐词完成概率、ELAN、LAN 和 N400 振幅方面显示出更强的预测能力,并且在预测阅读时间方面与惊奇有更大的互补性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized Measures of Anticipation and Responsivity in Online Language Processing
We introduce a generalization of classic information-theoretic measures of predictive uncertainty in online language processing, based on the simulation of expected continuations of incremental linguistic contexts. Our framework provides a formal definition of anticipatory and responsive measures, and it equips experimenters with the tools to define new, more expressive measures beyond standard next-symbol entropy and surprisal. While extracting these standard quantities from language models is convenient, we demonstrate that using Monte Carlo simulation to estimate alternative responsive and anticipatory measures pays off empirically: New special cases of our generalized formula exhibit enhanced predictive power compared to surprisal for human cloze completion probability as well as ELAN, LAN, and N400 amplitudes, and greater complementarity with surprisal in predicting reading times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid Antenna-enabled Integrated Sensing, Communication, and Computing Systems On the second-order zero differential properties of several classes of power functions over finite fields Synchronizable hybrid subsystem codes Decoding Algorithm Correcting Single-Insertion Plus Single-Deletion for Non-binary Quantum Codes A Symbol-Pair Decoder for CSS Codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1