{"title":"ZnS:Cu/PDMS 弹性体的结构化多孔增强机械发光","authors":"Shicai Zhu, Changhui Song, Yu Tian, Liran Ma","doi":"10.1016/j.materresbull.2024.113099","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanoluminescence (ML) exhibits distinctive mechano-optical response characteristics, rendering it promising for various applications. This study presents a porous ML elastomer capable of high intensity luminescence and extended sensitive dimension, which is prepared by molding the composite of luminescent particles (ZnS:Cu) and polydimethylsiloxane (PDMS) within a structured-porous template. With quantitative measurements and simulations, the enhanced luminescence can be attributed to the effect of stress concentration and the enhancement of contact electrification induced by the pore structure. Compared to the dense structure, the luminescence of the porous structure is greatly enhanced (more than 10 times!) and sensitive to compressing, which can promisingly expand ML applications from unidirectional stretching (2D) to three-dimensional (3D).</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"181 ","pages":"Article 113099"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004306/pdfft?md5=75305b6f23bd14c4fe14126c5ce9d30c&pid=1-s2.0-S0025540824004306-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structured-porous-enhanced mechanoluminescence of ZnS:Cu/PDMS elastomer\",\"authors\":\"Shicai Zhu, Changhui Song, Yu Tian, Liran Ma\",\"doi\":\"10.1016/j.materresbull.2024.113099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mechanoluminescence (ML) exhibits distinctive mechano-optical response characteristics, rendering it promising for various applications. This study presents a porous ML elastomer capable of high intensity luminescence and extended sensitive dimension, which is prepared by molding the composite of luminescent particles (ZnS:Cu) and polydimethylsiloxane (PDMS) within a structured-porous template. With quantitative measurements and simulations, the enhanced luminescence can be attributed to the effect of stress concentration and the enhancement of contact electrification induced by the pore structure. Compared to the dense structure, the luminescence of the porous structure is greatly enhanced (more than 10 times!) and sensitive to compressing, which can promisingly expand ML applications from unidirectional stretching (2D) to three-dimensional (3D).</p></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"181 \",\"pages\":\"Article 113099\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0025540824004306/pdfft?md5=75305b6f23bd14c4fe14126c5ce9d30c&pid=1-s2.0-S0025540824004306-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824004306\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004306","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
机械发光(ML)具有独特的机械光学响应特性,因此在各种应用中大有可为。本研究介绍了一种多孔 ML 弹性体,它能够发出高强度的荧光并扩展灵敏度,其制备方法是将发光粒子(ZnS:Cu)和聚二甲基硅氧烷(PDMS)复合在一个结构化多孔模板中成型。通过定量测量和模拟,发光增强可归因于应力集中效应和孔隙结构引起的接触电化增强。与致密结构相比,多孔结构的发光性能大大增强(超过 10 倍!),并且对压缩敏感,有望将 ML 的应用从单向拉伸(2D)扩展到三维(3D)。
Structured-porous-enhanced mechanoluminescence of ZnS:Cu/PDMS elastomer
Mechanoluminescence (ML) exhibits distinctive mechano-optical response characteristics, rendering it promising for various applications. This study presents a porous ML elastomer capable of high intensity luminescence and extended sensitive dimension, which is prepared by molding the composite of luminescent particles (ZnS:Cu) and polydimethylsiloxane (PDMS) within a structured-porous template. With quantitative measurements and simulations, the enhanced luminescence can be attributed to the effect of stress concentration and the enhancement of contact electrification induced by the pore structure. Compared to the dense structure, the luminescence of the porous structure is greatly enhanced (more than 10 times!) and sensitive to compressing, which can promisingly expand ML applications from unidirectional stretching (2D) to three-dimensional (3D).
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.