Muhammad Farman , Ali Hasan , Changjin Xu , Kottakkaran Sooppy Nisar , Evren Hincal
{"title":"监测分数阶 1 型糖尿病模型的计算技术,用于人工胰腺的反馈设计","authors":"Muhammad Farman , Ali Hasan , Changjin Xu , Kottakkaran Sooppy Nisar , Evren Hincal","doi":"10.1016/j.cmpb.2024.108420","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objectives:</h3><p>In this paper, we developed a significant class of control issues regulated by nonlinear fractal order systems with input and output signals, our goal is to design a direct transcription method with impulsive instant order. Recent advances in the artificial pancreas system provide an emerging treatment option for type 1 diabetes. The performance of the blood glucose regulation directly relies on the accuracy of the glucose-insulin modeling. This work leads to the monitoring and assessment of comprehensive type-1 diabetes mellitus for controller design of artificial panaceas for the precision of the glucose-insulin glucagon in finite time with Caputo fractional approach for three primary subsystems.</p></div><div><h3>Methods:</h3><p>For the proposed model, we admire the qualitative analysis with equilibrium points lying in the feasible region. Model satisfied the biological feasibility with the Lipschitz criteria and linear growth is examined, considering positive solutions, boundedness and uniqueness at equilibrium points with Leray–Schauder results under time scale ideas. Within each subsystem, the virtual control input laws are derived by the application of input to state theorems and Ulam Hyers Rassias.</p></div><div><h3>Results:</h3><p>Chaotic Relation of Glucose insulin glucagon compartmental in the feasible region and stable in finite time interval monitoring is derived through simulations that are stable and bounded in the feasible regions. Additionally, as blood glucose is the only measurable state variable, the unscented power-law kernel estimator appropriately takes into account the significant problem of estimating inaccessible state variables that are bound to significant values for the glucose-insulin system. The comparative results on the simulated patients suggest that the suggested controller strategy performs remarkably better than the compared methods.</p></div><div><h3>Conclusion:</h3><p>In the model under investigation, parametric uncertainties are identified since the glucose, insulin, and glucagon system’s parameters are accurately measured numerically at different fractional order values. In terms of algorithm resilience and Caputo tracking in the presence of glucagon and insulin intake disturbance to maintain the glucose level. A comprehensive analysis of numerous difficult test issues is conducted in order to offer a thorough justification of the planned strategy to control the type 1 diabetes mellitus with designed the artificial pancreas.</p></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108420"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational techniques to monitoring fractional order type-1 diabetes mellitus model for feedback design of artificial pancreas\",\"authors\":\"Muhammad Farman , Ali Hasan , Changjin Xu , Kottakkaran Sooppy Nisar , Evren Hincal\",\"doi\":\"10.1016/j.cmpb.2024.108420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objectives:</h3><p>In this paper, we developed a significant class of control issues regulated by nonlinear fractal order systems with input and output signals, our goal is to design a direct transcription method with impulsive instant order. Recent advances in the artificial pancreas system provide an emerging treatment option for type 1 diabetes. The performance of the blood glucose regulation directly relies on the accuracy of the glucose-insulin modeling. This work leads to the monitoring and assessment of comprehensive type-1 diabetes mellitus for controller design of artificial panaceas for the precision of the glucose-insulin glucagon in finite time with Caputo fractional approach for three primary subsystems.</p></div><div><h3>Methods:</h3><p>For the proposed model, we admire the qualitative analysis with equilibrium points lying in the feasible region. Model satisfied the biological feasibility with the Lipschitz criteria and linear growth is examined, considering positive solutions, boundedness and uniqueness at equilibrium points with Leray–Schauder results under time scale ideas. Within each subsystem, the virtual control input laws are derived by the application of input to state theorems and Ulam Hyers Rassias.</p></div><div><h3>Results:</h3><p>Chaotic Relation of Glucose insulin glucagon compartmental in the feasible region and stable in finite time interval monitoring is derived through simulations that are stable and bounded in the feasible regions. Additionally, as blood glucose is the only measurable state variable, the unscented power-law kernel estimator appropriately takes into account the significant problem of estimating inaccessible state variables that are bound to significant values for the glucose-insulin system. The comparative results on the simulated patients suggest that the suggested controller strategy performs remarkably better than the compared methods.</p></div><div><h3>Conclusion:</h3><p>In the model under investigation, parametric uncertainties are identified since the glucose, insulin, and glucagon system’s parameters are accurately measured numerically at different fractional order values. In terms of algorithm resilience and Caputo tracking in the presence of glucagon and insulin intake disturbance to maintain the glucose level. A comprehensive analysis of numerous difficult test issues is conducted in order to offer a thorough justification of the planned strategy to control the type 1 diabetes mellitus with designed the artificial pancreas.</p></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"257 \",\"pages\":\"Article 108420\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260724004139\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004139","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Computational techniques to monitoring fractional order type-1 diabetes mellitus model for feedback design of artificial pancreas
Background and objectives:
In this paper, we developed a significant class of control issues regulated by nonlinear fractal order systems with input and output signals, our goal is to design a direct transcription method with impulsive instant order. Recent advances in the artificial pancreas system provide an emerging treatment option for type 1 diabetes. The performance of the blood glucose regulation directly relies on the accuracy of the glucose-insulin modeling. This work leads to the monitoring and assessment of comprehensive type-1 diabetes mellitus for controller design of artificial panaceas for the precision of the glucose-insulin glucagon in finite time with Caputo fractional approach for three primary subsystems.
Methods:
For the proposed model, we admire the qualitative analysis with equilibrium points lying in the feasible region. Model satisfied the biological feasibility with the Lipschitz criteria and linear growth is examined, considering positive solutions, boundedness and uniqueness at equilibrium points with Leray–Schauder results under time scale ideas. Within each subsystem, the virtual control input laws are derived by the application of input to state theorems and Ulam Hyers Rassias.
Results:
Chaotic Relation of Glucose insulin glucagon compartmental in the feasible region and stable in finite time interval monitoring is derived through simulations that are stable and bounded in the feasible regions. Additionally, as blood glucose is the only measurable state variable, the unscented power-law kernel estimator appropriately takes into account the significant problem of estimating inaccessible state variables that are bound to significant values for the glucose-insulin system. The comparative results on the simulated patients suggest that the suggested controller strategy performs remarkably better than the compared methods.
Conclusion:
In the model under investigation, parametric uncertainties are identified since the glucose, insulin, and glucagon system’s parameters are accurately measured numerically at different fractional order values. In terms of algorithm resilience and Caputo tracking in the presence of glucagon and insulin intake disturbance to maintain the glucose level. A comprehensive analysis of numerous difficult test issues is conducted in order to offer a thorough justification of the planned strategy to control the type 1 diabetes mellitus with designed the artificial pancreas.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.