类软组织材料中的立方非线性和表面冲击波

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Ultrasonics Pub Date : 2024-09-19 DOI:10.1016/j.ultras.2024.107469
Héctor Alarcón , Belfor Galaz , David Espíndola
{"title":"类软组织材料中的立方非线性和表面冲击波","authors":"Héctor Alarcón ,&nbsp;Belfor Galaz ,&nbsp;David Espíndola","doi":"10.1016/j.ultras.2024.107469","DOIUrl":null,"url":null,"abstract":"<div><div>The cubic nonlinearity of shear wave propagation plays a significant role in brain injury biomechanics. However, soft materials, like the brain, also support the propagation of surface waves, which produce a combination of longitudinal and transverse deformation. The order of the nonlinearity of surface waves in soft materials is still unknown. Here, we directly observe nonlinear Scholte waves propagating in an interface formed by an incompressible gelatin tissue-mimicking phantom and a water layer using ultrasound imaging operated as fast as 16667 frames per second. A two-dimensional correlation-based tracking algorithm was utilized to extract movies of the movement produced by the surface wave. Our results show that the initially nearly monochromatic wave becomes progressively distorted with the propagation due to nonlinearity. The distortion of the wave and its frequency spectrum indicate a high content of odd harmonics when compared with even harmonics. Additionally, by fitting our experimental data to a minimalist one-dimensional model based on the wave speed variation as a function of the perturbation amplitude, we found a cubic nonlinear parameter 46 times larger than the quadratic nonlinear parameter. Overall, the wave distortion, the harmonic development, and the dependence of the wave speed with the amplitude prove that cubic nonlinearity is essential to modeling nonlinear Scholte wave propagation.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cubic nonlinearity and surface shock waves in soft tissue-like materials\",\"authors\":\"Héctor Alarcón ,&nbsp;Belfor Galaz ,&nbsp;David Espíndola\",\"doi\":\"10.1016/j.ultras.2024.107469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cubic nonlinearity of shear wave propagation plays a significant role in brain injury biomechanics. However, soft materials, like the brain, also support the propagation of surface waves, which produce a combination of longitudinal and transverse deformation. The order of the nonlinearity of surface waves in soft materials is still unknown. Here, we directly observe nonlinear Scholte waves propagating in an interface formed by an incompressible gelatin tissue-mimicking phantom and a water layer using ultrasound imaging operated as fast as 16667 frames per second. A two-dimensional correlation-based tracking algorithm was utilized to extract movies of the movement produced by the surface wave. Our results show that the initially nearly monochromatic wave becomes progressively distorted with the propagation due to nonlinearity. The distortion of the wave and its frequency spectrum indicate a high content of odd harmonics when compared with even harmonics. Additionally, by fitting our experimental data to a minimalist one-dimensional model based on the wave speed variation as a function of the perturbation amplitude, we found a cubic nonlinear parameter 46 times larger than the quadratic nonlinear parameter. Overall, the wave distortion, the harmonic development, and the dependence of the wave speed with the amplitude prove that cubic nonlinearity is essential to modeling nonlinear Scholte wave propagation.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X24002324\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002324","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

剪切波传播的立方非线性在脑损伤生物力学中起着重要作用。然而,像大脑这样的软材料也支持表面波的传播,表面波会产生纵向和横向变形。软材料中表面波的非线性阶次仍然未知。在这里,我们利用每秒高达 16667 帧的超声波成像技术,直接观察了在不可压缩的明胶组织模拟模型和水层形成的界面中传播的非线性肖尔特波。我们利用基于二维相关性的跟踪算法来提取表面波运动的视频。我们的研究结果表明,由于非线性原因,最初近乎单色的波在传播过程中逐渐失真。波的畸变及其频谱表明,与偶次谐波相比,奇次谐波的含量较高。此外,通过将实验数据拟合到基于波速变化与扰动振幅函数关系的极简一维模型中,我们发现三次非线性参数比二次非线性参数大 46 倍。总之,波的畸变、谐波发展以及波速与振幅的关系证明,三次非线性对于非线性肖尔特波传播建模至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cubic nonlinearity and surface shock waves in soft tissue-like materials
The cubic nonlinearity of shear wave propagation plays a significant role in brain injury biomechanics. However, soft materials, like the brain, also support the propagation of surface waves, which produce a combination of longitudinal and transverse deformation. The order of the nonlinearity of surface waves in soft materials is still unknown. Here, we directly observe nonlinear Scholte waves propagating in an interface formed by an incompressible gelatin tissue-mimicking phantom and a water layer using ultrasound imaging operated as fast as 16667 frames per second. A two-dimensional correlation-based tracking algorithm was utilized to extract movies of the movement produced by the surface wave. Our results show that the initially nearly monochromatic wave becomes progressively distorted with the propagation due to nonlinearity. The distortion of the wave and its frequency spectrum indicate a high content of odd harmonics when compared with even harmonics. Additionally, by fitting our experimental data to a minimalist one-dimensional model based on the wave speed variation as a function of the perturbation amplitude, we found a cubic nonlinear parameter 46 times larger than the quadratic nonlinear parameter. Overall, the wave distortion, the harmonic development, and the dependence of the wave speed with the amplitude prove that cubic nonlinearity is essential to modeling nonlinear Scholte wave propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
期刊最新文献
Band edge modulation for high-performance LL-SAW resonators on LiNbO3/SiC by introducing an ultra-thin intermediate oxide layer. Low-intensity pulsed ultrasound reduces oxidative and endoplasmic reticulum stress in motor neuron cells RFImageNet framework for segmentation of ultrasound images with spectra-augmented radiofrequency signals Ultrasonic backscattering measurement of hardness gradient distribution in polycrystalline materials Simulation and experimentation of nonlinear Rayleigh wave inspection of fatigue surface microcracks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1