{"title":"利用优化的自关注渐进生成对抗网络,在多样化虚拟化云计算环境中实现能量和时间感知调度。","authors":"G Senthilkumar, S Anandamurugan","doi":"10.1080/0954898X.2024.2391401","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid growth of cloud computing has led to the widespread adoption of heterogeneous virtualized environments, offering scalable and flexible resources to meet diverse user demands. However, the increasing complexity and variability in workload characteristics pose significant challenges in optimizing energy consumption. Many scheduling algorithms have been suggested to address this. Therefore, a self-attention-based progressive generative adversarial network optimized with Dwarf Mongoose algorithm adopted Energy and Deadline Aware Scheduling in heterogeneous virtualized cloud computing (SAPGAN-DMA-DAS-HVCC) is proposed in this paper. Here, a self-attention based progressive generative adversarial network (SAPGAN) is proposed to schedule activities in a cloud environment with an objective function of makespan and energy consumption. Then Dwarf Mongoose algorithm is proposed to optimize the weight parameters of SAPGAN. Outcome of proposed approach SAPGAN-DMA-DAS-HVCC contains 32.77%, 34.83% and 35.76% higher right skewed makespan, 31.52%, 33.28% and 29.14% lower cost when analysed to the existing models, like task scheduling in heterogeneous cloud environment utilizing mean grey wolf optimization approach, energy and performance-efficient task scheduling in heterogeneous virtualized Energy and Performance Efficient Task Scheduling Algorithm, energy and make span aware scheduling of deadline sensitive tasks on the cloud environment, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-20"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy and time-aware scheduling in diverse virtualized cloud computing environments using optimized self-attention progressive generative adversarial network.\",\"authors\":\"G Senthilkumar, S Anandamurugan\",\"doi\":\"10.1080/0954898X.2024.2391401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid growth of cloud computing has led to the widespread adoption of heterogeneous virtualized environments, offering scalable and flexible resources to meet diverse user demands. However, the increasing complexity and variability in workload characteristics pose significant challenges in optimizing energy consumption. Many scheduling algorithms have been suggested to address this. Therefore, a self-attention-based progressive generative adversarial network optimized with Dwarf Mongoose algorithm adopted Energy and Deadline Aware Scheduling in heterogeneous virtualized cloud computing (SAPGAN-DMA-DAS-HVCC) is proposed in this paper. Here, a self-attention based progressive generative adversarial network (SAPGAN) is proposed to schedule activities in a cloud environment with an objective function of makespan and energy consumption. Then Dwarf Mongoose algorithm is proposed to optimize the weight parameters of SAPGAN. Outcome of proposed approach SAPGAN-DMA-DAS-HVCC contains 32.77%, 34.83% and 35.76% higher right skewed makespan, 31.52%, 33.28% and 29.14% lower cost when analysed to the existing models, like task scheduling in heterogeneous cloud environment utilizing mean grey wolf optimization approach, energy and performance-efficient task scheduling in heterogeneous virtualized Energy and Performance Efficient Task Scheduling Algorithm, energy and make span aware scheduling of deadline sensitive tasks on the cloud environment, respectively.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2391401\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2391401","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Energy and time-aware scheduling in diverse virtualized cloud computing environments using optimized self-attention progressive generative adversarial network.
The rapid growth of cloud computing has led to the widespread adoption of heterogeneous virtualized environments, offering scalable and flexible resources to meet diverse user demands. However, the increasing complexity and variability in workload characteristics pose significant challenges in optimizing energy consumption. Many scheduling algorithms have been suggested to address this. Therefore, a self-attention-based progressive generative adversarial network optimized with Dwarf Mongoose algorithm adopted Energy and Deadline Aware Scheduling in heterogeneous virtualized cloud computing (SAPGAN-DMA-DAS-HVCC) is proposed in this paper. Here, a self-attention based progressive generative adversarial network (SAPGAN) is proposed to schedule activities in a cloud environment with an objective function of makespan and energy consumption. Then Dwarf Mongoose algorithm is proposed to optimize the weight parameters of SAPGAN. Outcome of proposed approach SAPGAN-DMA-DAS-HVCC contains 32.77%, 34.83% and 35.76% higher right skewed makespan, 31.52%, 33.28% and 29.14% lower cost when analysed to the existing models, like task scheduling in heterogeneous cloud environment utilizing mean grey wolf optimization approach, energy and performance-efficient task scheduling in heterogeneous virtualized Energy and Performance Efficient Task Scheduling Algorithm, energy and make span aware scheduling of deadline sensitive tasks on the cloud environment, respectively.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.