{"title":"石英砂和聚丙烯微粒在土壤中短期暴露后的生物膜微生物指标。","authors":"Nataliia Tkachuk, Liubov Zelena","doi":"10.1080/08927014.2024.2406340","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to investigate dynamics of biofilm biomass on microparticles of natural material quartz sand and the artificial material polypropylene (plastisphere) as well as change in biofilm-forming microorganisms' number under a short-term <i>in situ</i> field study. In this study microparticles of polypropylene and quartz sand ranging in size from 3 to 5 mm were used. The total microbial count and the number of sulfate-reducing bacteria in the biofilm (by traditional culture-based microbiological methods) and the biofilm biomass (by the method with the crystal violet) were investigated. According to the determined microbiological indicators, over time (90 days) on the polypropylene it was observed decreasing of both the number of studied groups of microorganisms and the formation of a microbial biofilm, compared to the quartz sand. Determination of microbiological indicators of the materials surface allows understanding the aspects of their preservation/removal from the environment and requires additional research.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"723-734"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiological indicators of the biofilms microparticles of quartz sand and polypropylene after short-term exposure in soil.\",\"authors\":\"Nataliia Tkachuk, Liubov Zelena\",\"doi\":\"10.1080/08927014.2024.2406340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to investigate dynamics of biofilm biomass on microparticles of natural material quartz sand and the artificial material polypropylene (plastisphere) as well as change in biofilm-forming microorganisms' number under a short-term <i>in situ</i> field study. In this study microparticles of polypropylene and quartz sand ranging in size from 3 to 5 mm were used. The total microbial count and the number of sulfate-reducing bacteria in the biofilm (by traditional culture-based microbiological methods) and the biofilm biomass (by the method with the crystal violet) were investigated. According to the determined microbiological indicators, over time (90 days) on the polypropylene it was observed decreasing of both the number of studied groups of microorganisms and the formation of a microbial biofilm, compared to the quartz sand. Determination of microbiological indicators of the materials surface allows understanding the aspects of their preservation/removal from the environment and requires additional research.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"723-734\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2406340\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2406340","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Microbiological indicators of the biofilms microparticles of quartz sand and polypropylene after short-term exposure in soil.
The purpose of this study was to investigate dynamics of biofilm biomass on microparticles of natural material quartz sand and the artificial material polypropylene (plastisphere) as well as change in biofilm-forming microorganisms' number under a short-term in situ field study. In this study microparticles of polypropylene and quartz sand ranging in size from 3 to 5 mm were used. The total microbial count and the number of sulfate-reducing bacteria in the biofilm (by traditional culture-based microbiological methods) and the biofilm biomass (by the method with the crystal violet) were investigated. According to the determined microbiological indicators, over time (90 days) on the polypropylene it was observed decreasing of both the number of studied groups of microorganisms and the formation of a microbial biofilm, compared to the quartz sand. Determination of microbiological indicators of the materials surface allows understanding the aspects of their preservation/removal from the environment and requires additional research.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.