{"title":"双功能离子液体 Cyphos IL 104 与聚合物包合膜结合萃取 Y、La、Nd 和 Sm 的新见解。","authors":"Mohamed Malki, Lynda Mitiche, Amar Sahmoune, Clàudia Fontàs","doi":"10.3390/membranes14090182","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, an ionic liquid-based polymer inclusion membrane (IL-PIM) made of (50% polymer-50% CyphosIL104) was used to extract and separate the rare earth elements (REEs) Y, La, Nd, and Sm in chloride solutions. The effect of extraction time and pH was studied to optimize the extraction and separation conditions. The four REEs were effectively extracted at pH 4-5 from both single and mixed metals solutions. However, at pH 2, only Y was extracted. The recovery of the extracted REEs from the loaded PIM was achieved using HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>. In the case of La, it was quantitatively back-extracted with H<sub>2</sub>SO<sub>4</sub> after a contact time of 1 h, while up to 4 h was necessary to recover 70% of the extracted Y, Sm, and Nd. Extraction isotherms were studied, and the Freundlich isotherm model was the most adequate to describe the interaction between the PIM and the REEs. Finally, the developed PIM was investigated for the extraction of REEs from mixtures containing other metals, which showed great selectivity for the REEs.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433663/pdf/","citationCount":"0","resultStr":"{\"title\":\"New Insights on Y, La, Nd, and Sm Extraction with Bifunctional Ionic Liquid Cyphos IL 104 Incorporated in a Polymer Inclusion Membrane.\",\"authors\":\"Mohamed Malki, Lynda Mitiche, Amar Sahmoune, Clàudia Fontàs\",\"doi\":\"10.3390/membranes14090182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, an ionic liquid-based polymer inclusion membrane (IL-PIM) made of (50% polymer-50% CyphosIL104) was used to extract and separate the rare earth elements (REEs) Y, La, Nd, and Sm in chloride solutions. The effect of extraction time and pH was studied to optimize the extraction and separation conditions. The four REEs were effectively extracted at pH 4-5 from both single and mixed metals solutions. However, at pH 2, only Y was extracted. The recovery of the extracted REEs from the loaded PIM was achieved using HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>. In the case of La, it was quantitatively back-extracted with H<sub>2</sub>SO<sub>4</sub> after a contact time of 1 h, while up to 4 h was necessary to recover 70% of the extracted Y, Sm, and Nd. Extraction isotherms were studied, and the Freundlich isotherm model was the most adequate to describe the interaction between the PIM and the REEs. Finally, the developed PIM was investigated for the extraction of REEs from mixtures containing other metals, which showed great selectivity for the REEs.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433663/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14090182\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14090182","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
New Insights on Y, La, Nd, and Sm Extraction with Bifunctional Ionic Liquid Cyphos IL 104 Incorporated in a Polymer Inclusion Membrane.
In this study, an ionic liquid-based polymer inclusion membrane (IL-PIM) made of (50% polymer-50% CyphosIL104) was used to extract and separate the rare earth elements (REEs) Y, La, Nd, and Sm in chloride solutions. The effect of extraction time and pH was studied to optimize the extraction and separation conditions. The four REEs were effectively extracted at pH 4-5 from both single and mixed metals solutions. However, at pH 2, only Y was extracted. The recovery of the extracted REEs from the loaded PIM was achieved using HNO3 and H2SO4. In the case of La, it was quantitatively back-extracted with H2SO4 after a contact time of 1 h, while up to 4 h was necessary to recover 70% of the extracted Y, Sm, and Nd. Extraction isotherms were studied, and the Freundlich isotherm model was the most adequate to describe the interaction between the PIM and the REEs. Finally, the developed PIM was investigated for the extraction of REEs from mixtures containing other metals, which showed great selectivity for the REEs.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.