调整聚偏氟乙烯/碱木素膜的特性,开发用于有机磷农药降解的生物催化膜反应器。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL Membranes Pub Date : 2024-08-28 DOI:10.3390/membranes14090186
Serena Regina, Giuseppe Vitola, Rosalinda Mazzei, Lidietta Giorno
{"title":"调整聚偏氟乙烯/碱木素膜的特性,开发用于有机磷农药降解的生物催化膜反应器。","authors":"Serena Regina, Giuseppe Vitola, Rosalinda Mazzei, Lidietta Giorno","doi":"10.3390/membranes14090186","DOIUrl":null,"url":null,"abstract":"<p><p>It has been observed that the immobilization of a phosphotriesterase enzyme (PTE) onto polyvinylidene fluoride (PVDF) membranes significantly decreased the enzyme activity, and this negative effect was attributed to the hydrophobic character of the membrane. The indirect indication of this reason was that the same enzyme immobilized on other membrane materials bearing hydrophilic character showed better performance. In this work, we provide direct evidence of the mechanism by immobilizing a PTE on a PVDF membrane hydrophilized by blending it with alkali lignin (AL). The PTE was immobilized on PVDF membrane by a covalent bond with the same procedure used in earlier studies to attribute changes in enzyme activity solely to the wettability properties (and not to the material chemistry). The activity of the PTE immobilized on the PVDF membrane hydrophilized with AL was 50% higher than that of the enzyme immobilized on the PVDF hydrophobic membrane. Further improvements of the membrane structure tailored for the development of a biocatalytic membrane reactor (BMR) were also promoted. In particular, the performance of the BMR was studied as a function of the thickness of the membrane, which allowed us to modulate the residence time into the enzyme-loaded membrane pores while maintaining the flow rate through the pores at a constant.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434455/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tuning the Properties of Polyvinylidene Fluoride/Alkali Lignin Membranes to Develop a Biocatalytic Membrane Reactor for an Organophosphorus Pesticide Degradation.\",\"authors\":\"Serena Regina, Giuseppe Vitola, Rosalinda Mazzei, Lidietta Giorno\",\"doi\":\"10.3390/membranes14090186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been observed that the immobilization of a phosphotriesterase enzyme (PTE) onto polyvinylidene fluoride (PVDF) membranes significantly decreased the enzyme activity, and this negative effect was attributed to the hydrophobic character of the membrane. The indirect indication of this reason was that the same enzyme immobilized on other membrane materials bearing hydrophilic character showed better performance. In this work, we provide direct evidence of the mechanism by immobilizing a PTE on a PVDF membrane hydrophilized by blending it with alkali lignin (AL). The PTE was immobilized on PVDF membrane by a covalent bond with the same procedure used in earlier studies to attribute changes in enzyme activity solely to the wettability properties (and not to the material chemistry). The activity of the PTE immobilized on the PVDF membrane hydrophilized with AL was 50% higher than that of the enzyme immobilized on the PVDF hydrophobic membrane. Further improvements of the membrane structure tailored for the development of a biocatalytic membrane reactor (BMR) were also promoted. In particular, the performance of the BMR was studied as a function of the thickness of the membrane, which allowed us to modulate the residence time into the enzyme-loaded membrane pores while maintaining the flow rate through the pores at a constant.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434455/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14090186\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14090186","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

据观察,将磷酸三酯酶(PTE)固定在聚偏氟乙烯(PVDF)膜上会显著降低酶的活性,而这种负面影响是由膜的疏水性造成的。这一原因的间接证据是,固定在其他亲水性膜材料上的相同酶表现出更好的性能。在这项工作中,我们通过将 PTE 固定在通过与碱木素(AL)混合而亲水的 PVDF 膜上,为该机制提供了直接证据。PTE 是通过共价键固定在 PVDF 膜上的,其固定过程与早期研究中使用的方法相同,将酶活性的变化完全归因于润湿性能(而非材料的化学性质)。用 AL 亲水固定在 PVDF 膜上的 PTE 的活性比固定在 PVDF 疏水膜上的酶的活性高 50%。为开发生物催化膜反应器(BMR)而定制的膜结构的进一步改进也得到了促进。特别是研究了生物催化膜反应器的性能与膜厚度的函数关系,这使我们能够调节酶载膜孔的停留时间,同时保持通过孔的流速恒定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning the Properties of Polyvinylidene Fluoride/Alkali Lignin Membranes to Develop a Biocatalytic Membrane Reactor for an Organophosphorus Pesticide Degradation.

It has been observed that the immobilization of a phosphotriesterase enzyme (PTE) onto polyvinylidene fluoride (PVDF) membranes significantly decreased the enzyme activity, and this negative effect was attributed to the hydrophobic character of the membrane. The indirect indication of this reason was that the same enzyme immobilized on other membrane materials bearing hydrophilic character showed better performance. In this work, we provide direct evidence of the mechanism by immobilizing a PTE on a PVDF membrane hydrophilized by blending it with alkali lignin (AL). The PTE was immobilized on PVDF membrane by a covalent bond with the same procedure used in earlier studies to attribute changes in enzyme activity solely to the wettability properties (and not to the material chemistry). The activity of the PTE immobilized on the PVDF membrane hydrophilized with AL was 50% higher than that of the enzyme immobilized on the PVDF hydrophobic membrane. Further improvements of the membrane structure tailored for the development of a biocatalytic membrane reactor (BMR) were also promoted. In particular, the performance of the BMR was studied as a function of the thickness of the membrane, which allowed us to modulate the residence time into the enzyme-loaded membrane pores while maintaining the flow rate through the pores at a constant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
The Application of TiO2/ZrO2-Modified Nanocomposite PES Membrane for Improved Permeability of Textile Dye in Water. Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties. Cell Type-Specific Anti- and Pro-Oxidative Effects of Punica granatum L. Ellagitannins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1