{"title":"心房利钠肽(ANP)可调节内皮细胞中由压力诱导的自噬。","authors":"Maurizio Forte , Simona Marchitti , Flavio di Nonno , Donatella Pietrangelo , Rosita Stanzione , Maria Cotugno , Luca D'Ambrosio , Alessandra D'Amico , Vittoria Cammisotto , Gianmarco Sarto , Erica Rocco , Beatrice Simeone , Sonia Schiavon , Daniele Vecchio , Roberto Carnevale , Salvatore Raffa , Giacomo Frati , Massimo Volpe , Sebastiano Sciarretta , Speranza Rubattu","doi":"10.1016/j.bbamcr.2024.119860","DOIUrl":null,"url":null,"abstract":"<div><div>Atrial natriuretic peptide (ANP), a cardiac hormone involved in the regulation of water/sodium balance and blood pressure, is also secreted by endothelial cells, where it exerts protective effects in response to stress. Autophagy is an intracellular self-renewal process involved in the degradation of dysfunctional cytoplasmic elements. ANP was recently reported to act as an extracellular regulator of cardiac autophagy. However, its role in the regulation of endothelial autophagy has never been investigated. Here, we tested the effects of ANP in the regulation of autophagy in human umbilical vein endothelial cells (HUVECs). We found that ANP rapidly increases autophagy and autophagic flux at physiological concentrations through its predominant pathway, mediated by natriuretic peptide receptor type A (NPR-A) and protein kinase G (PKG). We further observed that ANP is rapidly secreted by HUVEC under stress conditions, where it mediates stress-induced autophagy through autocrine and paracrine mechanisms. Finally, we found that the protective effects of ANP in response to high-salt loading or tumor necrosis factor (TNF)-α are blunted by concomitant inhibition of autophagy. Overall, our results suggest that ANP acts as an endogenous autophagy activator in endothelial cells. The autophagy mechanism mediates the protective endothelial effects exerted by ANP.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 1","pages":"Article 119860"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atrial natriuretic peptide (ANP) modulates stress-induced autophagy in endothelial cells\",\"authors\":\"Maurizio Forte , Simona Marchitti , Flavio di Nonno , Donatella Pietrangelo , Rosita Stanzione , Maria Cotugno , Luca D'Ambrosio , Alessandra D'Amico , Vittoria Cammisotto , Gianmarco Sarto , Erica Rocco , Beatrice Simeone , Sonia Schiavon , Daniele Vecchio , Roberto Carnevale , Salvatore Raffa , Giacomo Frati , Massimo Volpe , Sebastiano Sciarretta , Speranza Rubattu\",\"doi\":\"10.1016/j.bbamcr.2024.119860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atrial natriuretic peptide (ANP), a cardiac hormone involved in the regulation of water/sodium balance and blood pressure, is also secreted by endothelial cells, where it exerts protective effects in response to stress. Autophagy is an intracellular self-renewal process involved in the degradation of dysfunctional cytoplasmic elements. ANP was recently reported to act as an extracellular regulator of cardiac autophagy. However, its role in the regulation of endothelial autophagy has never been investigated. Here, we tested the effects of ANP in the regulation of autophagy in human umbilical vein endothelial cells (HUVECs). We found that ANP rapidly increases autophagy and autophagic flux at physiological concentrations through its predominant pathway, mediated by natriuretic peptide receptor type A (NPR-A) and protein kinase G (PKG). We further observed that ANP is rapidly secreted by HUVEC under stress conditions, where it mediates stress-induced autophagy through autocrine and paracrine mechanisms. Finally, we found that the protective effects of ANP in response to high-salt loading or tumor necrosis factor (TNF)-α are blunted by concomitant inhibition of autophagy. Overall, our results suggest that ANP acts as an endogenous autophagy activator in endothelial cells. The autophagy mechanism mediates the protective endothelial effects exerted by ANP.</div></div>\",\"PeriodicalId\":8754,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular cell research\",\"volume\":\"1872 1\",\"pages\":\"Article 119860\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular cell research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167488924002039\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924002039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Atrial natriuretic peptide (ANP) modulates stress-induced autophagy in endothelial cells
Atrial natriuretic peptide (ANP), a cardiac hormone involved in the regulation of water/sodium balance and blood pressure, is also secreted by endothelial cells, where it exerts protective effects in response to stress. Autophagy is an intracellular self-renewal process involved in the degradation of dysfunctional cytoplasmic elements. ANP was recently reported to act as an extracellular regulator of cardiac autophagy. However, its role in the regulation of endothelial autophagy has never been investigated. Here, we tested the effects of ANP in the regulation of autophagy in human umbilical vein endothelial cells (HUVECs). We found that ANP rapidly increases autophagy and autophagic flux at physiological concentrations through its predominant pathway, mediated by natriuretic peptide receptor type A (NPR-A) and protein kinase G (PKG). We further observed that ANP is rapidly secreted by HUVEC under stress conditions, where it mediates stress-induced autophagy through autocrine and paracrine mechanisms. Finally, we found that the protective effects of ANP in response to high-salt loading or tumor necrosis factor (TNF)-α are blunted by concomitant inhibition of autophagy. Overall, our results suggest that ANP acts as an endogenous autophagy activator in endothelial cells. The autophagy mechanism mediates the protective endothelial effects exerted by ANP.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.