Pengfei Shi, L. Ruby Leung, Hui Lu, Bin Wang, Kun Yang, Haishan Chen
{"title":"揭示与青藏高原有关的 2003 年欧洲夏季热浪的年际可预测性","authors":"Pengfei Shi, L. Ruby Leung, Hui Lu, Bin Wang, Kun Yang, Haishan Chen","doi":"10.1038/s41612-024-00782-3","DOIUrl":null,"url":null,"abstract":"Known as the Third Pole, the Tibetan Plateau (TP) significantly influences global weather and climate, but its potential for improving subseasonal-to-interannual predictions remains underexplored. Through coupled climate simulations and hindcast experiments, we uncovered interannual predictability of the 2003 European summer heatwave that persisted from June to August with devastating impacts. Hindcasts initialized from the atmosphere, land, and ocean states of a coupled simulation that assimilates soil moisture and soil temperature data over the TP show substantial skill in predicting this heatwave two years in advance. Hindcast sensitivity experiments isolated the indispensable role of the spring TP snow cover anomalies and their impact on the Atlantic and Pacific Oceans in exciting the Rossby waves that contributed to the anomalous European summer temperature. These findings highlight the dominant and remote influence of the TP and motivate research on its role in enhancing the predictability of extreme events worldwide.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00782-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Uncovering the interannual predictability of the 2003 European summer heatwave linked to the Tibetan Plateau\",\"authors\":\"Pengfei Shi, L. Ruby Leung, Hui Lu, Bin Wang, Kun Yang, Haishan Chen\",\"doi\":\"10.1038/s41612-024-00782-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Known as the Third Pole, the Tibetan Plateau (TP) significantly influences global weather and climate, but its potential for improving subseasonal-to-interannual predictions remains underexplored. Through coupled climate simulations and hindcast experiments, we uncovered interannual predictability of the 2003 European summer heatwave that persisted from June to August with devastating impacts. Hindcasts initialized from the atmosphere, land, and ocean states of a coupled simulation that assimilates soil moisture and soil temperature data over the TP show substantial skill in predicting this heatwave two years in advance. Hindcast sensitivity experiments isolated the indispensable role of the spring TP snow cover anomalies and their impact on the Atlantic and Pacific Oceans in exciting the Rossby waves that contributed to the anomalous European summer temperature. These findings highlight the dominant and remote influence of the TP and motivate research on its role in enhancing the predictability of extreme events worldwide.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00782-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00782-3\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00782-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Uncovering the interannual predictability of the 2003 European summer heatwave linked to the Tibetan Plateau
Known as the Third Pole, the Tibetan Plateau (TP) significantly influences global weather and climate, but its potential for improving subseasonal-to-interannual predictions remains underexplored. Through coupled climate simulations and hindcast experiments, we uncovered interannual predictability of the 2003 European summer heatwave that persisted from June to August with devastating impacts. Hindcasts initialized from the atmosphere, land, and ocean states of a coupled simulation that assimilates soil moisture and soil temperature data over the TP show substantial skill in predicting this heatwave two years in advance. Hindcast sensitivity experiments isolated the indispensable role of the spring TP snow cover anomalies and their impact on the Atlantic and Pacific Oceans in exciting the Rossby waves that contributed to the anomalous European summer temperature. These findings highlight the dominant and remote influence of the TP and motivate research on its role in enhancing the predictability of extreme events worldwide.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.