Bo Peng, Wu Lin, Wenjun Zhou, Yan Bai, Anguo Luo, Shenghua Xie, Lixue Yin
{"title":"利用DC-Contrast U-Net增强小儿甲状腺超声图像分割。","authors":"Bo Peng, Wu Lin, Wenjun Zhou, Yan Bai, Anguo Luo, Shenghua Xie, Lixue Yin","doi":"10.1186/s12880-024-01415-0","DOIUrl":null,"url":null,"abstract":"<p><p>Early screening methods for the thyroid gland include palpation and imaging. Although palpation is relatively simple, its effectiveness in detecting early clinical signs of the thyroid gland may be limited, especially in children, due to the shorter thyroid growth time. Therefore, this constitutes a crucial foundational work. However, accurately determining the location and size of the thyroid gland in children is a challenging task. Accuracy depends on the experience of the ultrasound operator in current clinical practice, leading to subjective results. Even among experts, there is poor agreement on thyroid identification. In addition, the effective use of ultrasound machines also relies on the experience of the ultrasound operator in current clinical practice. In order to extract sufficient texture information from pediatric thyroid ultrasound images while reducing the computational complexity and number of parameters, this paper designs a novel U-Net-based network called DC-Contrast U-Net, which aims to achieve better segmentation performance with lower complexity in medical image segmentation. The results show that compared with other U-Net-related segmentation models, the proposed DC-Contrast U-Net model achieves higher segmentation accuracy while improving the inference speed, making it a promising candidate for deployment in medical edge devices in clinical applications in the future.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468058/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced pediatric thyroid ultrasound image segmentation using DC-Contrast U-Net.\",\"authors\":\"Bo Peng, Wu Lin, Wenjun Zhou, Yan Bai, Anguo Luo, Shenghua Xie, Lixue Yin\",\"doi\":\"10.1186/s12880-024-01415-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early screening methods for the thyroid gland include palpation and imaging. Although palpation is relatively simple, its effectiveness in detecting early clinical signs of the thyroid gland may be limited, especially in children, due to the shorter thyroid growth time. Therefore, this constitutes a crucial foundational work. However, accurately determining the location and size of the thyroid gland in children is a challenging task. Accuracy depends on the experience of the ultrasound operator in current clinical practice, leading to subjective results. Even among experts, there is poor agreement on thyroid identification. In addition, the effective use of ultrasound machines also relies on the experience of the ultrasound operator in current clinical practice. In order to extract sufficient texture information from pediatric thyroid ultrasound images while reducing the computational complexity and number of parameters, this paper designs a novel U-Net-based network called DC-Contrast U-Net, which aims to achieve better segmentation performance with lower complexity in medical image segmentation. The results show that compared with other U-Net-related segmentation models, the proposed DC-Contrast U-Net model achieves higher segmentation accuracy while improving the inference speed, making it a promising candidate for deployment in medical edge devices in clinical applications in the future.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468058/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-024-01415-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01415-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Enhanced pediatric thyroid ultrasound image segmentation using DC-Contrast U-Net.
Early screening methods for the thyroid gland include palpation and imaging. Although palpation is relatively simple, its effectiveness in detecting early clinical signs of the thyroid gland may be limited, especially in children, due to the shorter thyroid growth time. Therefore, this constitutes a crucial foundational work. However, accurately determining the location and size of the thyroid gland in children is a challenging task. Accuracy depends on the experience of the ultrasound operator in current clinical practice, leading to subjective results. Even among experts, there is poor agreement on thyroid identification. In addition, the effective use of ultrasound machines also relies on the experience of the ultrasound operator in current clinical practice. In order to extract sufficient texture information from pediatric thyroid ultrasound images while reducing the computational complexity and number of parameters, this paper designs a novel U-Net-based network called DC-Contrast U-Net, which aims to achieve better segmentation performance with lower complexity in medical image segmentation. The results show that compared with other U-Net-related segmentation models, the proposed DC-Contrast U-Net model achieves higher segmentation accuracy while improving the inference speed, making it a promising candidate for deployment in medical edge devices in clinical applications in the future.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.