用机械化学法优化合成非钛位掺杂钛酸锂

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-10-01 DOI:10.1016/j.materresbull.2024.113124
Daoyong Lin , Zhifu Liu , Da Li , Jinjun Zhao , Yue Liu , Lei Cao , Guanxiang Ma , Wei Zhao
{"title":"用机械化学法优化合成非钛位掺杂钛酸锂","authors":"Daoyong Lin ,&nbsp;Zhifu Liu ,&nbsp;Da Li ,&nbsp;Jinjun Zhao ,&nbsp;Yue Liu ,&nbsp;Lei Cao ,&nbsp;Guanxiang Ma ,&nbsp;Wei Zhao","doi":"10.1016/j.materresbull.2024.113124","DOIUrl":null,"url":null,"abstract":"<div><div>The Li<sub>2</sub>CO<sub>3</sub>-ammonia-ballmilling synthesis system of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) was optimized and doped Li and O by theirs adjacent elements Mg and F respectively. By adjusting <strong>the ballmilling parameter</strong>, the distribution of Li and Ti sources, the hydrolysis rate and <strong>different nucleophilic / electrophilic hydrolysis path of Ti</strong>, and the interaction between Li and Ti species can be effectively controlled. The temperature programmed calcination is beneficial to the formation of the middle state (Li<sub>2</sub>TiO<sub>3</sub>), obtaining the high quality LTO. Mg and F doping can further optimize the hydrolysis and condensation degree of Ti source, the number of crystal nucleus and the particle size. Therefore, the initial first discharged capability of Mg doped LTO and F doped LTO reach to 152.4 mAh/g and 163.1 mAh/g at 5 C respectively, corresponding 32.4 % and 41.7 % enhancing compared to LTO (115.1 mAh/g). Moreover, the discharge voltage of LTO-Mg decreases from 1.5 V to 1.3 V.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"181 ","pages":"Article 113124"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized and nonTi-site doped synthesis of lithium titanate by mechanochemical method\",\"authors\":\"Daoyong Lin ,&nbsp;Zhifu Liu ,&nbsp;Da Li ,&nbsp;Jinjun Zhao ,&nbsp;Yue Liu ,&nbsp;Lei Cao ,&nbsp;Guanxiang Ma ,&nbsp;Wei Zhao\",\"doi\":\"10.1016/j.materresbull.2024.113124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Li<sub>2</sub>CO<sub>3</sub>-ammonia-ballmilling synthesis system of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) was optimized and doped Li and O by theirs adjacent elements Mg and F respectively. By adjusting <strong>the ballmilling parameter</strong>, the distribution of Li and Ti sources, the hydrolysis rate and <strong>different nucleophilic / electrophilic hydrolysis path of Ti</strong>, and the interaction between Li and Ti species can be effectively controlled. The temperature programmed calcination is beneficial to the formation of the middle state (Li<sub>2</sub>TiO<sub>3</sub>), obtaining the high quality LTO. Mg and F doping can further optimize the hydrolysis and condensation degree of Ti source, the number of crystal nucleus and the particle size. Therefore, the initial first discharged capability of Mg doped LTO and F doped LTO reach to 152.4 mAh/g and 163.1 mAh/g at 5 C respectively, corresponding 32.4 % and 41.7 % enhancing compared to LTO (115.1 mAh/g). Moreover, the discharge voltage of LTO-Mg decreases from 1.5 V to 1.3 V.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"181 \",\"pages\":\"Article 113124\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824004549\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004549","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对Li4Ti5O12(LTO)的Li2CO3-氨研磨合成体系进行了优化,并分别用相邻元素Mg和F掺杂了Li和O。通过调节球磨参数,可以有效控制 Li 和 Ti 的来源分布、Ti 的水解速率和不同的亲核/亲电水解路径,以及 Li 和 Ti 之间的相互作用。温度编程煅烧有利于中间态(Li2TiO3)的形成,从而获得高质量的 LTO。掺杂 Mg 和 F 能进一步优化 Ti 源的水解和缩合程度、晶核数量和粒度。因此,掺杂镁的 LTO 和掺杂氟的 LTO 在 5 C 时的初始首次放电能力分别达到 152.4 mAh/g 和 163.1 mAh/g,与 LTO(115.1 mAh/g)相比分别提高了 32.4% 和 41.7%。此外,LTO-Mg 的放电电压从 1.5 V 降至 1.3 V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized and nonTi-site doped synthesis of lithium titanate by mechanochemical method
The Li2CO3-ammonia-ballmilling synthesis system of Li4Ti5O12 (LTO) was optimized and doped Li and O by theirs adjacent elements Mg and F respectively. By adjusting the ballmilling parameter, the distribution of Li and Ti sources, the hydrolysis rate and different nucleophilic / electrophilic hydrolysis path of Ti, and the interaction between Li and Ti species can be effectively controlled. The temperature programmed calcination is beneficial to the formation of the middle state (Li2TiO3), obtaining the high quality LTO. Mg and F doping can further optimize the hydrolysis and condensation degree of Ti source, the number of crystal nucleus and the particle size. Therefore, the initial first discharged capability of Mg doped LTO and F doped LTO reach to 152.4 mAh/g and 163.1 mAh/g at 5 C respectively, corresponding 32.4 % and 41.7 % enhancing compared to LTO (115.1 mAh/g). Moreover, the discharge voltage of LTO-Mg decreases from 1.5 V to 1.3 V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Effect of Cr substitution in ZnFe2O4 nanoparticles on the electron transfer at electrochemical interfaces Zn2+-decorated porous g-C3N4 with nitrogen vacancies: Synthesis, enhanced photocatalytic performance and mechanism in degrading organic contaminants Efficient enhancement of piezo-catalytic activity of BaTiO3-based piezoelectric ceramics via phase boundary engineering Interfacial coupling mechanism for efficient degradation of tetracycline by heteroatom iodine (I)-doped BiOBr under visible light: Efficacy and driving force Synthesis of molybdenum disulfide/covalent organic frameworks composite for efficient solar-driven hydrogen production and pollutant degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1