用于锂离子电池的 Ti3C2Tx MXene 涂层三维有序大孔锗阳极,具有更高的循环稳定性和快速锂离子迁移率

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-10-09 DOI:10.1016/j.materresbull.2024.113138
Zhaoliang Yu , Duo Wang , Ming Lu , Jiaming Li , Xiangdong Meng , Haibo Li
{"title":"用于锂离子电池的 Ti3C2Tx MXene 涂层三维有序大孔锗阳极,具有更高的循环稳定性和快速锂离子迁移率","authors":"Zhaoliang Yu ,&nbsp;Duo Wang ,&nbsp;Ming Lu ,&nbsp;Jiaming Li ,&nbsp;Xiangdong Meng ,&nbsp;Haibo Li","doi":"10.1016/j.materresbull.2024.113138","DOIUrl":null,"url":null,"abstract":"<div><div>The current trend in electronic device development and electric vehicle technology has resulted in A growing need for negative electrode materials that possess high capacity and quick Li-ion transport properties. Ge-based materials are considered the very promising candidates owing to their high theoretical capacity and facile alloying reaction with Li. In order to enhance the rate of Li-ion diffusion and account for the volume change of over 300 %, a Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene coated 3D ordered macroporous germanium (3DOM Ge@MXene) structure was successfully developed. The 3DOM Ge@MXene provides a 1490 mAh g<sup>−1</sup> initial reversible capacity at 0.32 A g<sup>−1</sup>. Additionally, after 100 cycles, it displays a consistent cycling ability of 1034 mAh g<sup>−1</sup>. The MXene coating also improves the material's Li-ion rapid transfer performance, with Li-ion diffusion coefficient of 1.35 × 10<sup>−10</sup> cm<sup>2</sup> <em>s</em><sup>−1</sup> for anodic and 2.2 × 10<sup>−10</sup> cm<sup>2</sup> <em>s</em><sup>−1</sup> for cathodic.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113138"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ti3C2Tx MXene coated 3D ordered macroporous germanium anodes for Li-ion batteries with enhanced cycling stability and fast Li-ion mobility\",\"authors\":\"Zhaoliang Yu ,&nbsp;Duo Wang ,&nbsp;Ming Lu ,&nbsp;Jiaming Li ,&nbsp;Xiangdong Meng ,&nbsp;Haibo Li\",\"doi\":\"10.1016/j.materresbull.2024.113138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current trend in electronic device development and electric vehicle technology has resulted in A growing need for negative electrode materials that possess high capacity and quick Li-ion transport properties. Ge-based materials are considered the very promising candidates owing to their high theoretical capacity and facile alloying reaction with Li. In order to enhance the rate of Li-ion diffusion and account for the volume change of over 300 %, a Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene coated 3D ordered macroporous germanium (3DOM Ge@MXene) structure was successfully developed. The 3DOM Ge@MXene provides a 1490 mAh g<sup>−1</sup> initial reversible capacity at 0.32 A g<sup>−1</sup>. Additionally, after 100 cycles, it displays a consistent cycling ability of 1034 mAh g<sup>−1</sup>. The MXene coating also improves the material's Li-ion rapid transfer performance, with Li-ion diffusion coefficient of 1.35 × 10<sup>−10</sup> cm<sup>2</sup> <em>s</em><sup>−1</sup> for anodic and 2.2 × 10<sup>−10</sup> cm<sup>2</sup> <em>s</em><sup>−1</sup> for cathodic.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"182 \",\"pages\":\"Article 113138\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824004689\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004689","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当前电子设备和电动汽车技术发展的趋势导致对具有高容量和快速锂离子传输特性的负极材料的需求与日俱增。锗基材料因其理论容量高且易于与锂发生合金反应而被认为是非常有前途的候选材料。为了提高锂离子的扩散速度并使体积变化超过 300%,我们成功开发了一种 Ti3C2Tx MXene 涂层三维有序大孔锗(3DOM Ge@MXene)结构。3DOM Ge@MXene 在 0.32 A g-1 的条件下可提供 1490 mAh g-1 的初始可逆容量。此外,经过 100 次循环后,它显示出 1034 mAh g-1 的稳定循环能力。MXene 涂层还提高了材料的锂离子快速转移性能,阳极锂离子扩散系数为 1.35 × 10-10 cm2 s-1,阴极锂离子扩散系数为 2.2 × 10-10 cm2 s-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ti3C2Tx MXene coated 3D ordered macroporous germanium anodes for Li-ion batteries with enhanced cycling stability and fast Li-ion mobility
The current trend in electronic device development and electric vehicle technology has resulted in A growing need for negative electrode materials that possess high capacity and quick Li-ion transport properties. Ge-based materials are considered the very promising candidates owing to their high theoretical capacity and facile alloying reaction with Li. In order to enhance the rate of Li-ion diffusion and account for the volume change of over 300 %, a Ti3C2Tx MXene coated 3D ordered macroporous germanium (3DOM Ge@MXene) structure was successfully developed. The 3DOM Ge@MXene provides a 1490 mAh g−1 initial reversible capacity at 0.32 A g−1. Additionally, after 100 cycles, it displays a consistent cycling ability of 1034 mAh g−1. The MXene coating also improves the material's Li-ion rapid transfer performance, with Li-ion diffusion coefficient of 1.35 × 10−10 cm2 s−1 for anodic and 2.2 × 10−10 cm2 s−1 for cathodic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Effect of Cr substitution in ZnFe2O4 nanoparticles on the electron transfer at electrochemical interfaces Zn2+-decorated porous g-C3N4 with nitrogen vacancies: Synthesis, enhanced photocatalytic performance and mechanism in degrading organic contaminants Efficient enhancement of piezo-catalytic activity of BaTiO3-based piezoelectric ceramics via phase boundary engineering Interfacial coupling mechanism for efficient degradation of tetracycline by heteroatom iodine (I)-doped BiOBr under visible light: Efficacy and driving force Synthesis of molybdenum disulfide/covalent organic frameworks composite for efficient solar-driven hydrogen production and pollutant degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1