MD-HIT:通过数据集冗余控制进行材料特性预测的机器学习

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-10-18 DOI:10.1038/s41524-024-01426-z
Qin Li, Nihang Fu, Sadman Sadeed Omee, Jianjun Hu
{"title":"MD-HIT:通过数据集冗余控制进行材料特性预测的机器学习","authors":"Qin Li, Nihang Fu, Sadman Sadeed Omee, Jianjun Hu","doi":"10.1038/s41524-024-01426-z","DOIUrl":null,"url":null,"abstract":"<p>Materials datasets usually contain many redundant (highly similar) materials due to the tinkering approach historically used in material design. This redundancy skews the performance evaluation of machine learning (ML) models when using random splitting, leading to overestimated predictive performance and poor performance on out-of-distribution samples. This issue is well-known in bioinformatics for protein function prediction, where tools like CD-HIT are used to reduce redundancy by ensuring sequence similarity among samples greater than a given threshold. In this paper, we survey the overestimated ML performance in materials science for material property prediction and propose MD-HIT, a redundancy reduction algorithm for material datasets. Applying MD-HIT to composition- and structure-based formation energy and band gap prediction problems, we demonstrate that with redundancy control, the prediction performances of the ML models on test sets tend to have relatively lower performance compared to the model with high redundancy, but better reflect models’ true prediction capability.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MD-HIT: Machine learning for material property prediction with dataset redundancy control\",\"authors\":\"Qin Li, Nihang Fu, Sadman Sadeed Omee, Jianjun Hu\",\"doi\":\"10.1038/s41524-024-01426-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Materials datasets usually contain many redundant (highly similar) materials due to the tinkering approach historically used in material design. This redundancy skews the performance evaluation of machine learning (ML) models when using random splitting, leading to overestimated predictive performance and poor performance on out-of-distribution samples. This issue is well-known in bioinformatics for protein function prediction, where tools like CD-HIT are used to reduce redundancy by ensuring sequence similarity among samples greater than a given threshold. In this paper, we survey the overestimated ML performance in materials science for material property prediction and propose MD-HIT, a redundancy reduction algorithm for material datasets. Applying MD-HIT to composition- and structure-based formation energy and band gap prediction problems, we demonstrate that with redundancy control, the prediction performances of the ML models on test sets tend to have relatively lower performance compared to the model with high redundancy, but better reflect models’ true prediction capability.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01426-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01426-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于材料设计历来采用修修补补的方法,材料数据集通常包含许多冗余(高度相似)材料。在使用随机拆分时,这种冗余会使机器学习(ML)模型的性能评估出现偏差,导致预测性能被高估,并且在非分布样本上的性能不佳。这个问题在生物信息学的蛋白质功能预测中是众所周知的,CD-HIT 等工具通过确保样本间的序列相似性大于给定阈值来减少冗余。在本文中,我们调查了材料科学中用于材料特性预测的被高估的 ML 性能,并提出了 MD-HIT,一种用于材料数据集的冗余减少算法。将 MD-HIT 应用于基于成分和结构的形成能和带隙预测问题,我们证明了在冗余控制下,ML 模型在测试集上的预测性能往往比高冗余度模型的性能相对较低,但能更好地反映模型的真实预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MD-HIT: Machine learning for material property prediction with dataset redundancy control

Materials datasets usually contain many redundant (highly similar) materials due to the tinkering approach historically used in material design. This redundancy skews the performance evaluation of machine learning (ML) models when using random splitting, leading to overestimated predictive performance and poor performance on out-of-distribution samples. This issue is well-known in bioinformatics for protein function prediction, where tools like CD-HIT are used to reduce redundancy by ensuring sequence similarity among samples greater than a given threshold. In this paper, we survey the overestimated ML performance in materials science for material property prediction and propose MD-HIT, a redundancy reduction algorithm for material datasets. Applying MD-HIT to composition- and structure-based formation energy and band gap prediction problems, we demonstrate that with redundancy control, the prediction performances of the ML models on test sets tend to have relatively lower performance compared to the model with high redundancy, but better reflect models’ true prediction capability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
MD-HIT: Machine learning for material property prediction with dataset redundancy control Accurate formation enthalpies of solids using reaction networks Unsupervised deep denoising for four-dimensional scanning transmission electron microscopy Phonon-limited mobility for electrons and holes in highly-strained silicon Fast prediction of anharmonic vibrational spectra for complex organic molecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1