主动学习加速探索氧电催化多金属体系中的单原子局部环境

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-10-19 DOI:10.1038/s41524-024-01432-1
Hoje Chun, Jaclyn R. Lunger, Jeung Ku Kang, Rafael Gómez-Bombarelli, Byungchan Han
{"title":"主动学习加速探索氧电催化多金属体系中的单原子局部环境","authors":"Hoje Chun, Jaclyn R. Lunger, Jeung Ku Kang, Rafael Gómez-Bombarelli, Byungchan Han","doi":"10.1038/s41524-024-01432-1","DOIUrl":null,"url":null,"abstract":"<p>Single-atom catalysts (SACs) with multiple active sites exhibit high activity for a wide range of sluggish reactions, but identifying optimal multimetallic SAC is challenging due to the vast design space. Here, we present a self-driving computational strategy that combines first-principles calculations and equivariant graph neural network (GNN) to explore over 30,000 binary metallic sites with varying combinations of 3<i>d</i> transition metals and different ligand environments for oxygen reduction and evolution reactions (ORR/OER). Active learning facilitates the investigation of the search space by balancing the exploration of unseen atomic structures with the exploitation of the active ones. The GNN learns the chemical environments to capture composition-structure-property relationships for ORR/OER activity and selectivity. The computational predictions of promising Co-Fe, Co-Co, and Co-Zn metal pairs are consistent with the state-of-the-art results of experimental measurements reported in the literature. This approach can be extended to a broader class of multi-element high entropic materials systems.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"8 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active learning accelerated exploration of single-atom local environments in multimetallic systems for oxygen electrocatalysis\",\"authors\":\"Hoje Chun, Jaclyn R. Lunger, Jeung Ku Kang, Rafael Gómez-Bombarelli, Byungchan Han\",\"doi\":\"10.1038/s41524-024-01432-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Single-atom catalysts (SACs) with multiple active sites exhibit high activity for a wide range of sluggish reactions, but identifying optimal multimetallic SAC is challenging due to the vast design space. Here, we present a self-driving computational strategy that combines first-principles calculations and equivariant graph neural network (GNN) to explore over 30,000 binary metallic sites with varying combinations of 3<i>d</i> transition metals and different ligand environments for oxygen reduction and evolution reactions (ORR/OER). Active learning facilitates the investigation of the search space by balancing the exploration of unseen atomic structures with the exploitation of the active ones. The GNN learns the chemical environments to capture composition-structure-property relationships for ORR/OER activity and selectivity. The computational predictions of promising Co-Fe, Co-Co, and Co-Zn metal pairs are consistent with the state-of-the-art results of experimental measurements reported in the literature. This approach can be extended to a broader class of multi-element high entropic materials systems.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01432-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01432-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

具有多个活性位点的单原子催化剂(SAC)在多种迟缓反应中表现出很高的活性,但由于设计空间巨大,确定最佳的多金属 SAC 具有挑战性。在此,我们提出了一种自驱动计算策略,该策略结合了第一性原理计算和等变图神经网络(GNN),探索了 30,000 多个具有不同 3d 过渡金属组合和不同配体环境的二元金属位点,用于氧还原和进化反应(ORR/OER)。主动学习通过平衡对未知原子结构的探索和对活跃原子结构的利用,促进了对搜索空间的研究。GNN 通过学习化学环境来捕捉 ORR/OER 活性和选择性的组成-结构-属性关系。对有前途的 Co-Fe、Co-Co 和 Co-Zn 金属对的计算预测与文献中报道的最新实验测量结果一致。这种方法可以扩展到更广泛的多元素高熵材料系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active learning accelerated exploration of single-atom local environments in multimetallic systems for oxygen electrocatalysis

Single-atom catalysts (SACs) with multiple active sites exhibit high activity for a wide range of sluggish reactions, but identifying optimal multimetallic SAC is challenging due to the vast design space. Here, we present a self-driving computational strategy that combines first-principles calculations and equivariant graph neural network (GNN) to explore over 30,000 binary metallic sites with varying combinations of 3d transition metals and different ligand environments for oxygen reduction and evolution reactions (ORR/OER). Active learning facilitates the investigation of the search space by balancing the exploration of unseen atomic structures with the exploitation of the active ones. The GNN learns the chemical environments to capture composition-structure-property relationships for ORR/OER activity and selectivity. The computational predictions of promising Co-Fe, Co-Co, and Co-Zn metal pairs are consistent with the state-of-the-art results of experimental measurements reported in the literature. This approach can be extended to a broader class of multi-element high entropic materials systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Dielectric tensor prediction for inorganic materials using latent information from preferred potential Automated optimization and uncertainty quantification of convergence parameters in plane wave density functional theory calculations Understanding chiral charge-density wave by frozen chiral phonon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1