Tetsuya Iizuka;Ritaro Takenaka;Hao Xu;Asad A. Abidi
{"title":"基于系统方程设计具有 2 GHz 分辨率带宽的 10 位 500-MS/s 单通道 SAR A/D 转换器","authors":"Tetsuya Iizuka;Ritaro Takenaka;Hao Xu;Asad A. Abidi","doi":"10.1109/OJSSCS.2024.3469109","DOIUrl":null,"url":null,"abstract":"A 10-b self-timed SAR A/D converter is designed in 28-nm FDSOI CMOS to convert at 500 MS/s. It maintains this effective number of bits across an input bandwidth of 2 GHz, because it will be used as one of eight identical converters in a time-interleaved system to reach a conversion rate of 4 GS/s. This circuit is based almost entirely on formal expressions for every building block circuit. This approach led to a strikingly short development time where every design choice was defensibly optimum and the prototype chip yielded near-textbook performance from the first silicon. The figure of merit is at the state of the art.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"147-162"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10695771","citationCount":"0","resultStr":"{\"title\":\"Systematic Equation-Based Design of a 10-Bit, 500-MS/s Single-Channel SAR A/D Converter With 2-GHz Resolution Bandwidth\",\"authors\":\"Tetsuya Iizuka;Ritaro Takenaka;Hao Xu;Asad A. Abidi\",\"doi\":\"10.1109/OJSSCS.2024.3469109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 10-b self-timed SAR A/D converter is designed in 28-nm FDSOI CMOS to convert at 500 MS/s. It maintains this effective number of bits across an input bandwidth of 2 GHz, because it will be used as one of eight identical converters in a time-interleaved system to reach a conversion rate of 4 GS/s. This circuit is based almost entirely on formal expressions for every building block circuit. This approach led to a strikingly short development time where every design choice was defensibly optimum and the prototype chip yielded near-textbook performance from the first silicon. The figure of merit is at the state of the art.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"4 \",\"pages\":\"147-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10695771\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10695771/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10695771/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Systematic Equation-Based Design of a 10-Bit, 500-MS/s Single-Channel SAR A/D Converter With 2-GHz Resolution Bandwidth
A 10-b self-timed SAR A/D converter is designed in 28-nm FDSOI CMOS to convert at 500 MS/s. It maintains this effective number of bits across an input bandwidth of 2 GHz, because it will be used as one of eight identical converters in a time-interleaved system to reach a conversion rate of 4 GS/s. This circuit is based almost entirely on formal expressions for every building block circuit. This approach led to a strikingly short development time where every design choice was defensibly optimum and the prototype chip yielded near-textbook performance from the first silicon. The figure of merit is at the state of the art.