神经连接:整合数据驱动和 BiGRU 分类,从 fMRI 数据中增强自闭症预测。

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-10-13 DOI:10.1080/0954898X.2024.2412679
Pavithra Rajaram, Mohanapriya Marimuthu
{"title":"神经连接:整合数据驱动和 BiGRU 分类,从 fMRI 数据中增强自闭症预测。","authors":"Pavithra Rajaram, Mohanapriya Marimuthu","doi":"10.1080/0954898X.2024.2412679","DOIUrl":null,"url":null,"abstract":"<p><p>Autism Spectrum Disorder (ASD) poses a significant challenge in early diagnosis and intervention due to its multifaceted clinical presentation and lack of objective biomarkers. This research presents a novel approach, termed Neuro Connect, which integrates data-driven techniques with Bidirectional Gated Recurrent Unit (BiGRU) classification to enhance the prediction of ASD using functional Magnetic Resonance Imaging (fMRI) data. This study uses both structural and functional neuroimaging data to investigate the complex brain underpinnings of autism spectrum disorder (ASD). They use an Auto-Encoder (AE) to efficiently reduce dimensionality while retaining critical information by learning and compressing important characteristics from high-dimensional data. We treat the feature-extracted data using a BiGRU model for the classification task of predicting ASD. They provide a new optimization strategy, the Horse Herd Algorithm (HHA), and show that it outperforms other established optimizers, such SGD and Adam, in order to improve classification accuracy. The model's performance is greatly enhanced by the HHA's novel optimization technique, which more precisely refines weight modifications made during training. The proposed ASD and EEG dataset accuracy value is 99.5%, and 99.3 compared to the existing method the proposed has a high accuracy value.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-32"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuro connect: Integrating data-driven and BiGRU classification for enhanced autism prediction from fMRI data.\",\"authors\":\"Pavithra Rajaram, Mohanapriya Marimuthu\",\"doi\":\"10.1080/0954898X.2024.2412679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autism Spectrum Disorder (ASD) poses a significant challenge in early diagnosis and intervention due to its multifaceted clinical presentation and lack of objective biomarkers. This research presents a novel approach, termed Neuro Connect, which integrates data-driven techniques with Bidirectional Gated Recurrent Unit (BiGRU) classification to enhance the prediction of ASD using functional Magnetic Resonance Imaging (fMRI) data. This study uses both structural and functional neuroimaging data to investigate the complex brain underpinnings of autism spectrum disorder (ASD). They use an Auto-Encoder (AE) to efficiently reduce dimensionality while retaining critical information by learning and compressing important characteristics from high-dimensional data. We treat the feature-extracted data using a BiGRU model for the classification task of predicting ASD. They provide a new optimization strategy, the Horse Herd Algorithm (HHA), and show that it outperforms other established optimizers, such SGD and Adam, in order to improve classification accuracy. The model's performance is greatly enhanced by the HHA's novel optimization technique, which more precisely refines weight modifications made during training. The proposed ASD and EEG dataset accuracy value is 99.5%, and 99.3 compared to the existing method the proposed has a high accuracy value.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-32\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2412679\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2412679","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

自闭症谱系障碍(ASD)的临床表现多种多样,且缺乏客观的生物标志物,这给早期诊断和干预带来了巨大挑战。这项研究提出了一种名为 "神经连接"(Neuro Connect)的新方法,它将数据驱动技术与双向门控递归单元(BiGRU)分类相结合,利用功能性磁共振成像(fMRI)数据加强对自闭症谱系障碍的预测。这项研究利用结构和功能神经成像数据来研究自闭症谱系障碍(ASD)复杂的大脑基础。他们使用自动编码器(AE)通过学习和压缩高维数据中的重要特征,在保留关键信息的同时有效地降低了维度。我们使用 BiGRU 模型处理提取的特征数据,以完成预测 ASD 的分类任务。他们提供了一种新的优化策略--马群算法(Horse Herd Algorithm,HHA),并证明它在提高分类准确性方面优于 SGD 和 Adam 等其他成熟的优化器。HHA 的新优化技术能更精确地完善训练过程中的权重修改,从而大大提高了模型的性能。所提出的 ASD 和脑电图数据集准确率值为 99.5%,与现有方法的 99.3 相比,所提出的方法具有较高的准确率值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuro connect: Integrating data-driven and BiGRU classification for enhanced autism prediction from fMRI data.

Autism Spectrum Disorder (ASD) poses a significant challenge in early diagnosis and intervention due to its multifaceted clinical presentation and lack of objective biomarkers. This research presents a novel approach, termed Neuro Connect, which integrates data-driven techniques with Bidirectional Gated Recurrent Unit (BiGRU) classification to enhance the prediction of ASD using functional Magnetic Resonance Imaging (fMRI) data. This study uses both structural and functional neuroimaging data to investigate the complex brain underpinnings of autism spectrum disorder (ASD). They use an Auto-Encoder (AE) to efficiently reduce dimensionality while retaining critical information by learning and compressing important characteristics from high-dimensional data. We treat the feature-extracted data using a BiGRU model for the classification task of predicting ASD. They provide a new optimization strategy, the Horse Herd Algorithm (HHA), and show that it outperforms other established optimizers, such SGD and Adam, in order to improve classification accuracy. The model's performance is greatly enhanced by the HHA's novel optimization technique, which more precisely refines weight modifications made during training. The proposed ASD and EEG dataset accuracy value is 99.5%, and 99.3 compared to the existing method the proposed has a high accuracy value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Performance analysis of image retrieval system using deep learning techniques. A novel efficient data storage and data auditing in cloud environment using enhanced child drawing development optimization strategy. Personalized recommendation system to handle skin cancer at early stage based on hybrid model. Robust text-dependent speaker verification system using gender aware Siamese-Triplet Deep Neural Network. Investigation on the reliability calculation method of gravity dam based on CNN-LSTM and Monte Carlo method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1