Rohan Jagtap, Yalamanchili Samata, Amisha Parekh, Pedro Tretto, Michael D Roach, Saranu Sethumanjusha, Chennupati Tejaswi, Prashant Jaju, Alan Friedel, Michelle Briner Garrido, Maxine Feinberg, Mini Suri
{"title":"利用深度学习对根尖周X光片中的多个牙齿特征进行分割的临床验证。","authors":"Rohan Jagtap, Yalamanchili Samata, Amisha Parekh, Pedro Tretto, Michael D Roach, Saranu Sethumanjusha, Chennupati Tejaswi, Prashant Jaju, Alan Friedel, Michelle Briner Garrido, Maxine Feinberg, Mini Suri","doi":"10.3390/bioengineering11101001","DOIUrl":null,"url":null,"abstract":"<p><p>Periapical radiographs are routinely used in dental practice for diagnosis and treatment planning purposes. However, they often suffer from artifacts, distortions, and superimpositions, which can lead to potential misinterpretations. Thus, an automated detection system is required to overcome these challenges. Artificial intelligence (AI) has been revolutionizing various fields, including medicine and dentistry, by facilitating the development of intelligent systems that can aid in performing complex tasks such as diagnosis and treatment planning. The purpose of the present study was to verify the diagnostic performance of an AI system for the automatic detection of teeth, caries, implants, restorations, and fixed prosthesis on periapical radiographs. A dataset comprising 1000 periapical radiographs collected from 500 adult patients was analyzed by an AI system and compared with annotations provided by two oral and maxillofacial radiologists. A strong correlation (R > 0.5) was observed between AI perception and observers 1 and 2 in carious teeth (0.7-0.73), implants (0.97-0.98), restored teeth (0.85-0.89), teeth with fixed prosthesis (0.92-0.94), and missing teeth (0.82-0.85). The automatic detection by the AI system was comparable to the oral radiologists and may be useful for automatic identification in periapical radiographs.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505595/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clinical Validation of Deep Learning for Segmentation of Multiple Dental Features in Periapical Radiographs.\",\"authors\":\"Rohan Jagtap, Yalamanchili Samata, Amisha Parekh, Pedro Tretto, Michael D Roach, Saranu Sethumanjusha, Chennupati Tejaswi, Prashant Jaju, Alan Friedel, Michelle Briner Garrido, Maxine Feinberg, Mini Suri\",\"doi\":\"10.3390/bioengineering11101001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Periapical radiographs are routinely used in dental practice for diagnosis and treatment planning purposes. However, they often suffer from artifacts, distortions, and superimpositions, which can lead to potential misinterpretations. Thus, an automated detection system is required to overcome these challenges. Artificial intelligence (AI) has been revolutionizing various fields, including medicine and dentistry, by facilitating the development of intelligent systems that can aid in performing complex tasks such as diagnosis and treatment planning. The purpose of the present study was to verify the diagnostic performance of an AI system for the automatic detection of teeth, caries, implants, restorations, and fixed prosthesis on periapical radiographs. A dataset comprising 1000 periapical radiographs collected from 500 adult patients was analyzed by an AI system and compared with annotations provided by two oral and maxillofacial radiologists. A strong correlation (R > 0.5) was observed between AI perception and observers 1 and 2 in carious teeth (0.7-0.73), implants (0.97-0.98), restored teeth (0.85-0.89), teeth with fixed prosthesis (0.92-0.94), and missing teeth (0.82-0.85). The automatic detection by the AI system was comparable to the oral radiologists and may be useful for automatic identification in periapical radiographs.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 10\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505595/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11101001\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11101001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Clinical Validation of Deep Learning for Segmentation of Multiple Dental Features in Periapical Radiographs.
Periapical radiographs are routinely used in dental practice for diagnosis and treatment planning purposes. However, they often suffer from artifacts, distortions, and superimpositions, which can lead to potential misinterpretations. Thus, an automated detection system is required to overcome these challenges. Artificial intelligence (AI) has been revolutionizing various fields, including medicine and dentistry, by facilitating the development of intelligent systems that can aid in performing complex tasks such as diagnosis and treatment planning. The purpose of the present study was to verify the diagnostic performance of an AI system for the automatic detection of teeth, caries, implants, restorations, and fixed prosthesis on periapical radiographs. A dataset comprising 1000 periapical radiographs collected from 500 adult patients was analyzed by an AI system and compared with annotations provided by two oral and maxillofacial radiologists. A strong correlation (R > 0.5) was observed between AI perception and observers 1 and 2 in carious teeth (0.7-0.73), implants (0.97-0.98), restored teeth (0.85-0.89), teeth with fixed prosthesis (0.92-0.94), and missing teeth (0.82-0.85). The automatic detection by the AI system was comparable to the oral radiologists and may be useful for automatic identification in periapical radiographs.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering