Jonatas Silva de Oliveira, Beatriz Ribeiro Ribas, Amanda Costa Ferro, Camilla Olga Tasso, Rafaelly Camargo, Alberto José Cavalheiro, Janaina Habib Jorge
{"title":"隐翅虫萃取物能减少白色念珠菌和变异链球菌的浮游细胞和生物膜。","authors":"Jonatas Silva de Oliveira, Beatriz Ribeiro Ribas, Amanda Costa Ferro, Camilla Olga Tasso, Rafaelly Camargo, Alberto José Cavalheiro, Janaina Habib Jorge","doi":"10.1080/08927014.2024.2418466","DOIUrl":null,"url":null,"abstract":"<p><p>Extracts of <i>Cryptocarya</i> species have been shown to reduce biofilms, demonstrating their antimicrobial effects. The extracts can be fractionated to optimize their potential. In this study, we evaluated the antimicrobial activity of <i>Cryptocarya moschata</i> fractions against planktonic cells and biofilms of <i>Candida albicans</i> and <i>Streptococcus mutans</i>. Four fractions were prepared: 100% hexane, acetate/hexane 1:1, 100% ethyl acetate, and water. The effect of the fractions on planktonic cells was assessed by counting the colony-forming units per milliliter (CFU/mL). Biofilm tests included CFU/mL, cell metabolic activity, and qualitative analysis using confocal laser scanning microscopy (CLSM). Results were analyzed by the Mann-Whitney U test (α = 0.05). The fractions contained lipophilic constituents, styrylpyrones, glycosylated flavonoids, and alkaloids. Acetate/hexane (1:1) and 100% ethyl acetate fractions reduced the CFU/mL of planktonic <i>C. albicans. C. moschata</i> fractions did not affect planktonic <i>S. mutans</i>. For biofilms, the fractions reduced the CFU/mL (from 2-5 logs) and cell metabolic activity (approximately 80% reduction in a single-species biofilm). CLSM showed the fractions reduced microorganism viability and damaged the extracellular matrix of biofilms. We conclude that the acetate/hexane 1:1 and 100% ethyl acetate <i>C. moschata</i> fractions exhibit antimicrobial effects against biofilms.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"831-846"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>Cryptocarya moschata</i> fractions decrease planktonic cells and biofilms of <i>Candida albicans</i> and <i>Streptococcus mutans</i>.\",\"authors\":\"Jonatas Silva de Oliveira, Beatriz Ribeiro Ribas, Amanda Costa Ferro, Camilla Olga Tasso, Rafaelly Camargo, Alberto José Cavalheiro, Janaina Habib Jorge\",\"doi\":\"10.1080/08927014.2024.2418466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracts of <i>Cryptocarya</i> species have been shown to reduce biofilms, demonstrating their antimicrobial effects. The extracts can be fractionated to optimize their potential. In this study, we evaluated the antimicrobial activity of <i>Cryptocarya moschata</i> fractions against planktonic cells and biofilms of <i>Candida albicans</i> and <i>Streptococcus mutans</i>. Four fractions were prepared: 100% hexane, acetate/hexane 1:1, 100% ethyl acetate, and water. The effect of the fractions on planktonic cells was assessed by counting the colony-forming units per milliliter (CFU/mL). Biofilm tests included CFU/mL, cell metabolic activity, and qualitative analysis using confocal laser scanning microscopy (CLSM). Results were analyzed by the Mann-Whitney U test (α = 0.05). The fractions contained lipophilic constituents, styrylpyrones, glycosylated flavonoids, and alkaloids. Acetate/hexane (1:1) and 100% ethyl acetate fractions reduced the CFU/mL of planktonic <i>C. albicans. C. moschata</i> fractions did not affect planktonic <i>S. mutans</i>. For biofilms, the fractions reduced the CFU/mL (from 2-5 logs) and cell metabolic activity (approximately 80% reduction in a single-species biofilm). CLSM showed the fractions reduced microorganism viability and damaged the extracellular matrix of biofilms. We conclude that the acetate/hexane 1:1 and 100% ethyl acetate <i>C. moschata</i> fractions exhibit antimicrobial effects against biofilms.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"831-846\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2418466\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2418466","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Cryptocarya moschata fractions decrease planktonic cells and biofilms of Candida albicans and Streptococcus mutans.
Extracts of Cryptocarya species have been shown to reduce biofilms, demonstrating their antimicrobial effects. The extracts can be fractionated to optimize their potential. In this study, we evaluated the antimicrobial activity of Cryptocarya moschata fractions against planktonic cells and biofilms of Candida albicans and Streptococcus mutans. Four fractions were prepared: 100% hexane, acetate/hexane 1:1, 100% ethyl acetate, and water. The effect of the fractions on planktonic cells was assessed by counting the colony-forming units per milliliter (CFU/mL). Biofilm tests included CFU/mL, cell metabolic activity, and qualitative analysis using confocal laser scanning microscopy (CLSM). Results were analyzed by the Mann-Whitney U test (α = 0.05). The fractions contained lipophilic constituents, styrylpyrones, glycosylated flavonoids, and alkaloids. Acetate/hexane (1:1) and 100% ethyl acetate fractions reduced the CFU/mL of planktonic C. albicans. C. moschata fractions did not affect planktonic S. mutans. For biofilms, the fractions reduced the CFU/mL (from 2-5 logs) and cell metabolic activity (approximately 80% reduction in a single-species biofilm). CLSM showed the fractions reduced microorganism viability and damaged the extracellular matrix of biofilms. We conclude that the acetate/hexane 1:1 and 100% ethyl acetate C. moschata fractions exhibit antimicrobial effects against biofilms.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.