Bo Xu, Li-Hua Liu, Houliang Lin, Yang Zhang, Ying Huang, Qing He, Fan Wang, Yi-Rui Wu, Zhiqian Zhang, Ao Jiang
{"title":"用于定向进化的无细胞噬菌体合成系统。","authors":"Bo Xu, Li-Hua Liu, Houliang Lin, Yang Zhang, Ying Huang, Qing He, Fan Wang, Yi-Rui Wu, Zhiqian Zhang, Ao Jiang","doi":"10.1016/j.tibtech.2024.10.005","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient phage production has always been an urgent need in fields such as drug discovery, disease treatment, and gene evolution. To meet this demand, we constructed a robust cell-free synthesis system for generating M13 phage by simplifying its genome, enabling a three-times faster efficiency compared with the traditional method in vivo. We further developed a cell-free directed evolution system in droplets, comprising a modified helper plasmid (ΔPS-ΔgIII-ΔgVI) and the simplified M13 genome-carrying gene mutation library. This system was greatly improved when coupled with fluorescence-activated droplet sorting (FADS). We successfully evolved the T7 RNA polymerase (RNAP), achieving a twofold higher activity to read through the T7 terminator. Moreover, we evolved the tryptophan tRNA into a suppressor tRNA with an eightfold increase in activity to read through the stop codon UAG.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cell-free bacteriophage synthesis system for directed evolution.\",\"authors\":\"Bo Xu, Li-Hua Liu, Houliang Lin, Yang Zhang, Ying Huang, Qing He, Fan Wang, Yi-Rui Wu, Zhiqian Zhang, Ao Jiang\",\"doi\":\"10.1016/j.tibtech.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient phage production has always been an urgent need in fields such as drug discovery, disease treatment, and gene evolution. To meet this demand, we constructed a robust cell-free synthesis system for generating M13 phage by simplifying its genome, enabling a three-times faster efficiency compared with the traditional method in vivo. We further developed a cell-free directed evolution system in droplets, comprising a modified helper plasmid (ΔPS-ΔgIII-ΔgVI) and the simplified M13 genome-carrying gene mutation library. This system was greatly improved when coupled with fluorescence-activated droplet sorting (FADS). We successfully evolved the T7 RNA polymerase (RNAP), achieving a twofold higher activity to read through the T7 terminator. Moreover, we evolved the tryptophan tRNA into a suppressor tRNA with an eightfold increase in activity to read through the stop codon UAG.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2024.10.005\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.10.005","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A cell-free bacteriophage synthesis system for directed evolution.
Efficient phage production has always been an urgent need in fields such as drug discovery, disease treatment, and gene evolution. To meet this demand, we constructed a robust cell-free synthesis system for generating M13 phage by simplifying its genome, enabling a three-times faster efficiency compared with the traditional method in vivo. We further developed a cell-free directed evolution system in droplets, comprising a modified helper plasmid (ΔPS-ΔgIII-ΔgVI) and the simplified M13 genome-carrying gene mutation library. This system was greatly improved when coupled with fluorescence-activated droplet sorting (FADS). We successfully evolved the T7 RNA polymerase (RNAP), achieving a twofold higher activity to read through the T7 terminator. Moreover, we evolved the tryptophan tRNA into a suppressor tRNA with an eightfold increase in activity to read through the stop codon UAG.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).