Alexander C Cambon, James Travis, Liping Sun, Jada Idokogi, Anna Kettermann
{"title":"优化 2 型糖尿病 3 期临床试验的样本量确定。","authors":"Alexander C Cambon, James Travis, Liping Sun, Jada Idokogi, Anna Kettermann","doi":"10.1002/pst.2446","DOIUrl":null,"url":null,"abstract":"<p><p>An informed estimate of subject-level variance is a key determinate for accurate estimation of the required sample size for clinical trials. Evaluating completed adult Type 2 diabetes studies submitted to the FDA for accuracy of the variance estimate at the planning stage provides insights to inform the sample size requirements for future studies. From the U.S. Food and Drug Administration (FDA) database of new drug applications containing 14,106 subjects from 26 phase 3 randomized studies submitted to the FDA in support of drug approvals in adult type 2 diabetes studies reviewed between 2013 and 2017, we obtained estimates of subject-level variance for the primary endpoint-change in glycated hemoglobin (HbA1c) from baseline to 6 months. In addition, we used nine additional studies to examine the impact of clinically meaningful covariates on residual standard deviation and sample size re-estimation. Our analyses show that reduced sample sizes can be used without interfering with the validity of efficacy results for adult type 2 diabetes drug trials. This finding has implications for future research involving the adult type 2 diabetes population, including the potential to reduce recruitment period length and improve the timeliness of results. Furthermore, our findings could be utilized in the design of future endocrinology clinical trials.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Sample Size Determinations for Phase 3 Clinical Trials in Type 2 Diabetes.\",\"authors\":\"Alexander C Cambon, James Travis, Liping Sun, Jada Idokogi, Anna Kettermann\",\"doi\":\"10.1002/pst.2446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An informed estimate of subject-level variance is a key determinate for accurate estimation of the required sample size for clinical trials. Evaluating completed adult Type 2 diabetes studies submitted to the FDA for accuracy of the variance estimate at the planning stage provides insights to inform the sample size requirements for future studies. From the U.S. Food and Drug Administration (FDA) database of new drug applications containing 14,106 subjects from 26 phase 3 randomized studies submitted to the FDA in support of drug approvals in adult type 2 diabetes studies reviewed between 2013 and 2017, we obtained estimates of subject-level variance for the primary endpoint-change in glycated hemoglobin (HbA1c) from baseline to 6 months. In addition, we used nine additional studies to examine the impact of clinically meaningful covariates on residual standard deviation and sample size re-estimation. Our analyses show that reduced sample sizes can be used without interfering with the validity of efficacy results for adult type 2 diabetes drug trials. This finding has implications for future research involving the adult type 2 diabetes population, including the potential to reduce recruitment period length and improve the timeliness of results. Furthermore, our findings could be utilized in the design of future endocrinology clinical trials.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2446\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2446","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Optimizing Sample Size Determinations for Phase 3 Clinical Trials in Type 2 Diabetes.
An informed estimate of subject-level variance is a key determinate for accurate estimation of the required sample size for clinical trials. Evaluating completed adult Type 2 diabetes studies submitted to the FDA for accuracy of the variance estimate at the planning stage provides insights to inform the sample size requirements for future studies. From the U.S. Food and Drug Administration (FDA) database of new drug applications containing 14,106 subjects from 26 phase 3 randomized studies submitted to the FDA in support of drug approvals in adult type 2 diabetes studies reviewed between 2013 and 2017, we obtained estimates of subject-level variance for the primary endpoint-change in glycated hemoglobin (HbA1c) from baseline to 6 months. In addition, we used nine additional studies to examine the impact of clinically meaningful covariates on residual standard deviation and sample size re-estimation. Our analyses show that reduced sample sizes can be used without interfering with the validity of efficacy results for adult type 2 diabetes drug trials. This finding has implications for future research involving the adult type 2 diabetes population, including the potential to reduce recruitment period length and improve the timeliness of results. Furthermore, our findings could be utilized in the design of future endocrinology clinical trials.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.