电力系统网络中电池储能系统(BESS)多功能应用控制系统的设计与实施

Chukwuemeka Emmanuel Okafor, Komla Agbenyo Folly
{"title":"电力系统网络中电池储能系统(BESS)多功能应用控制系统的设计与实施","authors":"Chukwuemeka Emmanuel Okafor,&nbsp;Komla Agbenyo Folly","doi":"10.1016/j.cles.2024.100153","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a design and implementation of a control system for the multifunctional applications of a Battery Energy Storage System in an electric network. Simulation results revealed that through the suggested control approach, a frequency support of 50.24 Hz for the 53-bus system during a load decrease contingency of 350MW was achieved. Without the control system, the frequency was 50 .38Hz. Such a high frequency if not addressed, may result in a loss of synchronization among interconnected synchronous machines which could result in a decrease in voltage stability of the studied network. Besides, a reduction of about 2.05 MW in the active power losses was accomplished and a reactive power support of 3.63Mvar was realised. Thus, through the proposed strategy, Battery energy storage system has been enabled for frequency regulation, power loss minimization and voltage deviation mitigation resulting in an overall enhancement of the power quality of the electric power delivered in the studied networks.</div></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network\",\"authors\":\"Chukwuemeka Emmanuel Okafor,&nbsp;Komla Agbenyo Folly\",\"doi\":\"10.1016/j.cles.2024.100153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work proposes a design and implementation of a control system for the multifunctional applications of a Battery Energy Storage System in an electric network. Simulation results revealed that through the suggested control approach, a frequency support of 50.24 Hz for the 53-bus system during a load decrease contingency of 350MW was achieved. Without the control system, the frequency was 50 .38Hz. Such a high frequency if not addressed, may result in a loss of synchronization among interconnected synchronous machines which could result in a decrease in voltage stability of the studied network. Besides, a reduction of about 2.05 MW in the active power losses was accomplished and a reactive power support of 3.63Mvar was realised. Thus, through the proposed strategy, Battery energy storage system has been enabled for frequency regulation, power loss minimization and voltage deviation mitigation resulting in an overall enhancement of the power quality of the electric power delivered in the studied networks.</div></div>\",\"PeriodicalId\":100252,\"journal\":{\"name\":\"Cleaner Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772783124000475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究提出了一种控制系统的设计和实施方法,以实现电池储能系统在电网中的多功能应用。仿真结果表明,通过建议的控制方法,在负载减少 350MW 的紧急情况下,53 总线系统的频率支持达到了 50.24Hz。在没有控制系统的情况下,频率为 50.38Hz。如此高的频率如果不加以控制,可能会导致相互连接的同步电机之间失去同步,从而降低所研究网络的电压稳定性。此外,还减少了约 2.05 兆瓦的有功功率损耗,并实现了 3.63Mvar 的无功功率支持。因此,通过所提出的策略,电池储能系统可用于频率调节、功率损耗最小化和电压偏差缓解,从而全面提高所研究电网的电力输送质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network
This work proposes a design and implementation of a control system for the multifunctional applications of a Battery Energy Storage System in an electric network. Simulation results revealed that through the suggested control approach, a frequency support of 50.24 Hz for the 53-bus system during a load decrease contingency of 350MW was achieved. Without the control system, the frequency was 50 .38Hz. Such a high frequency if not addressed, may result in a loss of synchronization among interconnected synchronous machines which could result in a decrease in voltage stability of the studied network. Besides, a reduction of about 2.05 MW in the active power losses was accomplished and a reactive power support of 3.63Mvar was realised. Thus, through the proposed strategy, Battery energy storage system has been enabled for frequency regulation, power loss minimization and voltage deviation mitigation resulting in an overall enhancement of the power quality of the electric power delivered in the studied networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Simulation of a system to simultaneously recover CO2 and sweet carbon-neutral natural gas from wet natural gas: A delve into process inputs and units performances Optimizing a hybrid wind-solar-biomass system with battery and hydrogen storage using generic algorithm-particle swarm optimization for performance assessment Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network Optimizing textile dyeing and finishing for improved energy efficiency and sustainability in fleece knitted fabrics Techno economic study of floating solar photovoltaic project in Indonesia using RETscreen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1