Junqi Wang , Hailong Li , Kim M Cecil , Mekibib Altaye , Nehal A Parikh , Lili He
{"title":"DFC-Igloo:用于识别早产儿神经发育生物标志物的动态功能连接组学习框架。","authors":"Junqi Wang , Hailong Li , Kim M Cecil , Mekibib Altaye , Nehal A Parikh , Lili He","doi":"10.1016/j.cmpb.2024.108479","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>Very preterm infants are susceptible to neurodevelopmental impairments, necessitating early detection of prognostic biomarkers for timely intervention. The study aims to explore possible functional biomarkers for very preterm infants at born that relate to their future cognitive and motor development using resting-state fMRI. Prior studies are limited by the sample size and suffer from efficient functional connectome (FC) construction algorithms that can handle the noisy data contained in neonatal time series, leading to equivocal findings. Therefore, we first propose an enhanced functional connectome construction algorithm as a prerequisite step. We then apply the new FC construction algorithm to our large prospective very preterm cohort to explore multi-level neurodevelopmental biomarkers.</div></div><div><h3>Methods</h3><div>There exists an intrinsic relationship between the structural connectome (SC) and FC, with a notable coupling between the two. This observation implies a putative property of graph signal smoothness on the SC as well. Yet, this property has not been fully exploited for constructing intrinsic dFC. In this study, we proposed an advanced dynamic FC (dFC) learning model, dFC-Igloo, which leveraged SC information to iteratively refine dFC estimations by applying graph signal smoothness to both FC and SC. The model was evaluated on artificial small-world graphs and simulated graph signals.</div></div><div><h3>Results</h3><div>The proposed model achieved the best and most robust recovery of the ground truth graph across different noise levels and simulated SC pairs from the simulation. The model was further applied to a cohort of very preterm infants from five Neonatal Intensive Care Units, where an enhanced dFC was obtained for each infant. Based on the improved dFC, we identified neurodevelopmental biomarkers for neonates across connectome-wide, regional, and subnetwork scales.</div></div><div><h3>Conclusion</h3><div>The identified markers correlate with cognitive and motor developmental outcomes, offering insights into early brain development and potential neurodevelopmental challenges.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108479"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFC-Igloo: A dynamic functional connectome learning framework for identifying neurodevelopmental biomarkers in very preterm infants\",\"authors\":\"Junqi Wang , Hailong Li , Kim M Cecil , Mekibib Altaye , Nehal A Parikh , Lili He\",\"doi\":\"10.1016/j.cmpb.2024.108479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective</h3><div>Very preterm infants are susceptible to neurodevelopmental impairments, necessitating early detection of prognostic biomarkers for timely intervention. The study aims to explore possible functional biomarkers for very preterm infants at born that relate to their future cognitive and motor development using resting-state fMRI. Prior studies are limited by the sample size and suffer from efficient functional connectome (FC) construction algorithms that can handle the noisy data contained in neonatal time series, leading to equivocal findings. Therefore, we first propose an enhanced functional connectome construction algorithm as a prerequisite step. We then apply the new FC construction algorithm to our large prospective very preterm cohort to explore multi-level neurodevelopmental biomarkers.</div></div><div><h3>Methods</h3><div>There exists an intrinsic relationship between the structural connectome (SC) and FC, with a notable coupling between the two. This observation implies a putative property of graph signal smoothness on the SC as well. Yet, this property has not been fully exploited for constructing intrinsic dFC. In this study, we proposed an advanced dynamic FC (dFC) learning model, dFC-Igloo, which leveraged SC information to iteratively refine dFC estimations by applying graph signal smoothness to both FC and SC. The model was evaluated on artificial small-world graphs and simulated graph signals.</div></div><div><h3>Results</h3><div>The proposed model achieved the best and most robust recovery of the ground truth graph across different noise levels and simulated SC pairs from the simulation. The model was further applied to a cohort of very preterm infants from five Neonatal Intensive Care Units, where an enhanced dFC was obtained for each infant. Based on the improved dFC, we identified neurodevelopmental biomarkers for neonates across connectome-wide, regional, and subnetwork scales.</div></div><div><h3>Conclusion</h3><div>The identified markers correlate with cognitive and motor developmental outcomes, offering insights into early brain development and potential neurodevelopmental challenges.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"257 \",\"pages\":\"Article 108479\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260724004723\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004723","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
DFC-Igloo: A dynamic functional connectome learning framework for identifying neurodevelopmental biomarkers in very preterm infants
Background and Objective
Very preterm infants are susceptible to neurodevelopmental impairments, necessitating early detection of prognostic biomarkers for timely intervention. The study aims to explore possible functional biomarkers for very preterm infants at born that relate to their future cognitive and motor development using resting-state fMRI. Prior studies are limited by the sample size and suffer from efficient functional connectome (FC) construction algorithms that can handle the noisy data contained in neonatal time series, leading to equivocal findings. Therefore, we first propose an enhanced functional connectome construction algorithm as a prerequisite step. We then apply the new FC construction algorithm to our large prospective very preterm cohort to explore multi-level neurodevelopmental biomarkers.
Methods
There exists an intrinsic relationship between the structural connectome (SC) and FC, with a notable coupling between the two. This observation implies a putative property of graph signal smoothness on the SC as well. Yet, this property has not been fully exploited for constructing intrinsic dFC. In this study, we proposed an advanced dynamic FC (dFC) learning model, dFC-Igloo, which leveraged SC information to iteratively refine dFC estimations by applying graph signal smoothness to both FC and SC. The model was evaluated on artificial small-world graphs and simulated graph signals.
Results
The proposed model achieved the best and most robust recovery of the ground truth graph across different noise levels and simulated SC pairs from the simulation. The model was further applied to a cohort of very preterm infants from five Neonatal Intensive Care Units, where an enhanced dFC was obtained for each infant. Based on the improved dFC, we identified neurodevelopmental biomarkers for neonates across connectome-wide, regional, and subnetwork scales.
Conclusion
The identified markers correlate with cognitive and motor developmental outcomes, offering insights into early brain development and potential neurodevelopmental challenges.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.