Yanming Ding , Jiaoxin Mei , Xiang Li , Kaihua Lu , Changhai Li
{"title":"隧道火灾中移动通风的烟气回流长度预测无量纲模型","authors":"Yanming Ding , Jiaoxin Mei , Xiang Li , Kaihua Lu , Changhai Li","doi":"10.1016/j.tsep.2024.103026","DOIUrl":null,"url":null,"abstract":"<div><div>The smoke in tunnel fire is the main factor that causes casualties. Mobile ventilation technology can effectively control smoke and improve ventilation conditions inside the tunnel through mobile fans, especially emergency rescue. Smoke backflow is an important feature of tunnel fires and the smoke backflow length is used as the evaluation index of the smoke control effect. In this paper, a prediction model of smoke backflow length is studied under mobile ventilation unit (MVU) in tunnel fires. The dimensional analysis method is adopted to deduce the expressions of smoke backflow length. Based on the numerical simulation validated by the experiments, the effects of MVU location, fan flow and fire source heat release rate on backflow length are investigated, respectively. Furthermore, artificial neural network is used for data augmentation to obtain the smoke backflow length in a wider range of data. Eventually, the optimal location for mobile fan is established, and a new dimensionless prediction model of smoke backflow length with MVU is proposed. This model is helpful to provide guidance for smoke control in tunnel fire during emergency rescue.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"56 ","pages":"Article 103026"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dimensionless model for smoke backflow length prediction with mobile ventilation in tunnel fire\",\"authors\":\"Yanming Ding , Jiaoxin Mei , Xiang Li , Kaihua Lu , Changhai Li\",\"doi\":\"10.1016/j.tsep.2024.103026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The smoke in tunnel fire is the main factor that causes casualties. Mobile ventilation technology can effectively control smoke and improve ventilation conditions inside the tunnel through mobile fans, especially emergency rescue. Smoke backflow is an important feature of tunnel fires and the smoke backflow length is used as the evaluation index of the smoke control effect. In this paper, a prediction model of smoke backflow length is studied under mobile ventilation unit (MVU) in tunnel fires. The dimensional analysis method is adopted to deduce the expressions of smoke backflow length. Based on the numerical simulation validated by the experiments, the effects of MVU location, fan flow and fire source heat release rate on backflow length are investigated, respectively. Furthermore, artificial neural network is used for data augmentation to obtain the smoke backflow length in a wider range of data. Eventually, the optimal location for mobile fan is established, and a new dimensionless prediction model of smoke backflow length with MVU is proposed. This model is helpful to provide guidance for smoke control in tunnel fire during emergency rescue.</div></div>\",\"PeriodicalId\":23062,\"journal\":{\"name\":\"Thermal Science and Engineering Progress\",\"volume\":\"56 \",\"pages\":\"Article 103026\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science and Engineering Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451904924006449\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006449","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A dimensionless model for smoke backflow length prediction with mobile ventilation in tunnel fire
The smoke in tunnel fire is the main factor that causes casualties. Mobile ventilation technology can effectively control smoke and improve ventilation conditions inside the tunnel through mobile fans, especially emergency rescue. Smoke backflow is an important feature of tunnel fires and the smoke backflow length is used as the evaluation index of the smoke control effect. In this paper, a prediction model of smoke backflow length is studied under mobile ventilation unit (MVU) in tunnel fires. The dimensional analysis method is adopted to deduce the expressions of smoke backflow length. Based on the numerical simulation validated by the experiments, the effects of MVU location, fan flow and fire source heat release rate on backflow length are investigated, respectively. Furthermore, artificial neural network is used for data augmentation to obtain the smoke backflow length in a wider range of data. Eventually, the optimal location for mobile fan is established, and a new dimensionless prediction model of smoke backflow length with MVU is proposed. This model is helpful to provide guidance for smoke control in tunnel fire during emergency rescue.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.