Elizabeth M. Jefremovas, Noah Kent, Jorge Marqués-Marchán, Miriam G. Fischer, Agustina Asenjo, Mathias Kläui
{"title":"通过实验实现连续薄膜中的瞬变目标天电离态","authors":"Elizabeth M. Jefremovas, Noah Kent, Jorge Marqués-Marchán, Miriam G. Fischer, Agustina Asenjo, Mathias Kläui","doi":"10.1063/5.0236814","DOIUrl":null,"url":null,"abstract":"Target skyrmions (TSks) are topological spin textures where the out-of-plane component of the magnetization twists an integer number of k-π rotations. Based on a magnetic multilayer stack in the form of n × [CoFeB/MgO/Ta], engineered to host topological spin textures via dipole and DMI energies, we have stabilized 1 π, 2 π, and 3 π target skyrmions by tuning material properties and thermal-excitations close to room temperature. The nucleated textures, imaged via Kerr and Magnetic Force Microscopies, are stable at zero magnetic field and robust within a range of temperatures (tens of Kelvin) close to room temperature (RT = 292 K) and over long time scales (months). Under applied field (mT), the TSks collapse into the central skyrmion core, which resists against higher magnetic fields (≈ 2 × TSk annihilation field), as the core is topologically protected. Micromagnetic simulations support our experimental findings, showing no TSk nucleation at 0 K, but a ≈ 30 % probability at 300 K for the experimental sample parameters. Our work provides a simple method to tailor spin textures in continuous films, enabling free movement in 2D space and creating a platform transferable to technological applications where the dynamics of the topological textures can be exploited beyond geometrical confinements.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental realization of metastable target skyrmion states in continuous films\",\"authors\":\"Elizabeth M. Jefremovas, Noah Kent, Jorge Marqués-Marchán, Miriam G. Fischer, Agustina Asenjo, Mathias Kläui\",\"doi\":\"10.1063/5.0236814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target skyrmions (TSks) are topological spin textures where the out-of-plane component of the magnetization twists an integer number of k-π rotations. Based on a magnetic multilayer stack in the form of n × [CoFeB/MgO/Ta], engineered to host topological spin textures via dipole and DMI energies, we have stabilized 1 π, 2 π, and 3 π target skyrmions by tuning material properties and thermal-excitations close to room temperature. The nucleated textures, imaged via Kerr and Magnetic Force Microscopies, are stable at zero magnetic field and robust within a range of temperatures (tens of Kelvin) close to room temperature (RT = 292 K) and over long time scales (months). Under applied field (mT), the TSks collapse into the central skyrmion core, which resists against higher magnetic fields (≈ 2 × TSk annihilation field), as the core is topologically protected. Micromagnetic simulations support our experimental findings, showing no TSk nucleation at 0 K, but a ≈ 30 % probability at 300 K for the experimental sample parameters. Our work provides a simple method to tailor spin textures in continuous films, enabling free movement in 2D space and creating a platform transferable to technological applications where the dynamics of the topological textures can be exploited beyond geometrical confinements.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0236814\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0236814","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Experimental realization of metastable target skyrmion states in continuous films
Target skyrmions (TSks) are topological spin textures where the out-of-plane component of the magnetization twists an integer number of k-π rotations. Based on a magnetic multilayer stack in the form of n × [CoFeB/MgO/Ta], engineered to host topological spin textures via dipole and DMI energies, we have stabilized 1 π, 2 π, and 3 π target skyrmions by tuning material properties and thermal-excitations close to room temperature. The nucleated textures, imaged via Kerr and Magnetic Force Microscopies, are stable at zero magnetic field and robust within a range of temperatures (tens of Kelvin) close to room temperature (RT = 292 K) and over long time scales (months). Under applied field (mT), the TSks collapse into the central skyrmion core, which resists against higher magnetic fields (≈ 2 × TSk annihilation field), as the core is topologically protected. Micromagnetic simulations support our experimental findings, showing no TSk nucleation at 0 K, but a ≈ 30 % probability at 300 K for the experimental sample parameters. Our work provides a simple method to tailor spin textures in continuous films, enabling free movement in 2D space and creating a platform transferable to technological applications where the dynamics of the topological textures can be exploited beyond geometrical confinements.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.