{"title":"晶体结构预测的深度学习生成模型","authors":"Xiaoshan Luo, Zhenyu Wang, Pengyue Gao, Jian Lv, Yanchao Wang, Changfeng Chen, Yanming Ma","doi":"10.1038/s41524-024-01443-y","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in deep learning generative models (GMs) have created high capabilities in accessing and assessing complex high-dimensional data, allowing superior efficiency in navigating vast material configuration space in search of viable structures. Coupling such capabilities with physically significant data to construct trained models for materials discovery is crucial to moving this emerging field forward. Here, we present a universal GM for crystal structure prediction (CSP) via a conditional crystal diffusion variational autoencoder (Cond-CDVAE) approach, which is tailored to allow user-defined material and physical parameters such as composition and pressure. This model is trained on an expansive dataset containing over 670,000 local minimum structures, including a rich spectrum of high-pressure structures, along with ambient-pressure structures in Materials Project database. We demonstrate that the Cond-CDVAE model can generate physically plausible structures with high fidelity under diverse pressure conditions without necessitating local optimization, accurately predicting 59.3% of the 3547 unseen ambient-pressure experimental structures within 800 structure samplings, with the accuracy rate climbing to 83.2% for structures comprising fewer than 20 atoms per unit cell. These results meet or exceed those achieved via conventional CSP methods based on global optimization. The present findings showcase substantial potential of GMs in the realm of CSP.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"18 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning generative model for crystal structure prediction\",\"authors\":\"Xiaoshan Luo, Zhenyu Wang, Pengyue Gao, Jian Lv, Yanchao Wang, Changfeng Chen, Yanming Ma\",\"doi\":\"10.1038/s41524-024-01443-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advances in deep learning generative models (GMs) have created high capabilities in accessing and assessing complex high-dimensional data, allowing superior efficiency in navigating vast material configuration space in search of viable structures. Coupling such capabilities with physically significant data to construct trained models for materials discovery is crucial to moving this emerging field forward. Here, we present a universal GM for crystal structure prediction (CSP) via a conditional crystal diffusion variational autoencoder (Cond-CDVAE) approach, which is tailored to allow user-defined material and physical parameters such as composition and pressure. This model is trained on an expansive dataset containing over 670,000 local minimum structures, including a rich spectrum of high-pressure structures, along with ambient-pressure structures in Materials Project database. We demonstrate that the Cond-CDVAE model can generate physically plausible structures with high fidelity under diverse pressure conditions without necessitating local optimization, accurately predicting 59.3% of the 3547 unseen ambient-pressure experimental structures within 800 structure samplings, with the accuracy rate climbing to 83.2% for structures comprising fewer than 20 atoms per unit cell. These results meet or exceed those achieved via conventional CSP methods based on global optimization. The present findings showcase substantial potential of GMs in the realm of CSP.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01443-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01443-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Deep learning generative model for crystal structure prediction
Recent advances in deep learning generative models (GMs) have created high capabilities in accessing and assessing complex high-dimensional data, allowing superior efficiency in navigating vast material configuration space in search of viable structures. Coupling such capabilities with physically significant data to construct trained models for materials discovery is crucial to moving this emerging field forward. Here, we present a universal GM for crystal structure prediction (CSP) via a conditional crystal diffusion variational autoencoder (Cond-CDVAE) approach, which is tailored to allow user-defined material and physical parameters such as composition and pressure. This model is trained on an expansive dataset containing over 670,000 local minimum structures, including a rich spectrum of high-pressure structures, along with ambient-pressure structures in Materials Project database. We demonstrate that the Cond-CDVAE model can generate physically plausible structures with high fidelity under diverse pressure conditions without necessitating local optimization, accurately predicting 59.3% of the 3547 unseen ambient-pressure experimental structures within 800 structure samplings, with the accuracy rate climbing to 83.2% for structures comprising fewer than 20 atoms per unit cell. These results meet or exceed those achieved via conventional CSP methods based on global optimization. The present findings showcase substantial potential of GMs in the realm of CSP.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.