{"title":"磁和光刺激下水凝胶微盘在空气-水界面的多模式运动和动态相互作用","authors":"Yifan Cheng, Shilu Zhu, Hui Ma, Shengting Zhang, Kun Wei, Shiyu Wu, Yongkang Tang, Ping Liu, Tingting Luo*, Guangli Liu* and Runhuai Yang*, ","doi":"10.1021/acsami.4c1215110.1021/acsami.4c12151","DOIUrl":null,"url":null,"abstract":"<p >The potential applications of hydrogel microrobots in biomedicine and environmental exploration have sparked significant interest in understanding their behavior under multiphysical fields. This study explores the multimodal locomotion and dynamic interaction of hydrogel microrobots at the air–water interface under magnetic and light stimuli. A pair of hydrogel microrobots at the air–water interface exhibits a transition from cooperative, combined rotation to interactive behavior, involving both rotation and revolution under the influence of a rotating magnetic field (RMF), and a shift from attraction to separation under near-infrared (NIR) light, demonstrating the dynamic modulation of their behaviors in response to different stimuli. Notably, the behavioral patterns of multiple hydrogel microrobots under multiphysical fields indicate that NIR light can enhance interactive motion behaviors under RMFs and extend the range of motion trajectories. Dynamic models for each condition are established and analyzed based on dynamic equilibrium, and their behavior can be modulated by parameters such as magnetic particle concentration, magnetic field frequency, and NIR light intensity. This work introduces a novel strategy for regulating and controlling the dynamic behaviors of hydrogel microrobots, offering new insights into their multiphysical field locomotion.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"16 45","pages":"61633–61644 61633–61644"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Locomotion and Dynamic Interaction of Hydrogel Microdisks at the Air–Water Interface under Magnetic and Light Stimuli\",\"authors\":\"Yifan Cheng, Shilu Zhu, Hui Ma, Shengting Zhang, Kun Wei, Shiyu Wu, Yongkang Tang, Ping Liu, Tingting Luo*, Guangli Liu* and Runhuai Yang*, \",\"doi\":\"10.1021/acsami.4c1215110.1021/acsami.4c12151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The potential applications of hydrogel microrobots in biomedicine and environmental exploration have sparked significant interest in understanding their behavior under multiphysical fields. This study explores the multimodal locomotion and dynamic interaction of hydrogel microrobots at the air–water interface under magnetic and light stimuli. A pair of hydrogel microrobots at the air–water interface exhibits a transition from cooperative, combined rotation to interactive behavior, involving both rotation and revolution under the influence of a rotating magnetic field (RMF), and a shift from attraction to separation under near-infrared (NIR) light, demonstrating the dynamic modulation of their behaviors in response to different stimuli. Notably, the behavioral patterns of multiple hydrogel microrobots under multiphysical fields indicate that NIR light can enhance interactive motion behaviors under RMFs and extend the range of motion trajectories. Dynamic models for each condition are established and analyzed based on dynamic equilibrium, and their behavior can be modulated by parameters such as magnetic particle concentration, magnetic field frequency, and NIR light intensity. This work introduces a novel strategy for regulating and controlling the dynamic behaviors of hydrogel microrobots, offering new insights into their multiphysical field locomotion.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"16 45\",\"pages\":\"61633–61644 61633–61644\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c12151\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c12151","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multimodal Locomotion and Dynamic Interaction of Hydrogel Microdisks at the Air–Water Interface under Magnetic and Light Stimuli
The potential applications of hydrogel microrobots in biomedicine and environmental exploration have sparked significant interest in understanding their behavior under multiphysical fields. This study explores the multimodal locomotion and dynamic interaction of hydrogel microrobots at the air–water interface under magnetic and light stimuli. A pair of hydrogel microrobots at the air–water interface exhibits a transition from cooperative, combined rotation to interactive behavior, involving both rotation and revolution under the influence of a rotating magnetic field (RMF), and a shift from attraction to separation under near-infrared (NIR) light, demonstrating the dynamic modulation of their behaviors in response to different stimuli. Notably, the behavioral patterns of multiple hydrogel microrobots under multiphysical fields indicate that NIR light can enhance interactive motion behaviors under RMFs and extend the range of motion trajectories. Dynamic models for each condition are established and analyzed based on dynamic equilibrium, and their behavior can be modulated by parameters such as magnetic particle concentration, magnetic field frequency, and NIR light intensity. This work introduces a novel strategy for regulating and controlling the dynamic behaviors of hydrogel microrobots, offering new insights into their multiphysical field locomotion.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.