一种细菌的趋化基因通过 c-di-GMP 控制胞外蛋白的产生影响海洋贻贝的幼虫定居和变态。

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biofouling Pub Date : 2024-11-14 DOI:10.1080/08927014.2024.2423806
Yu Tao, Jiayi Mu, Lihua Peng, Jin-Long Yang, Xiao Liang
{"title":"一种细菌的趋化基因通过 c-di-GMP 控制胞外蛋白的产生影响海洋贻贝的幼虫定居和变态。","authors":"Yu Tao, Jiayi Mu, Lihua Peng, Jin-Long Yang, Xiao Liang","doi":"10.1080/08927014.2024.2423806","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial chemotaxis enhances bacterial adaptation to the environment and is important for biofilm formation. Biofilms play a key role in inducing larval settlement and metamorphosis in many marine invertebrates. However, the specific mechanisms by which bacterial chemotaxis influences larval settlement and metamorphosis in mussels remain unknown. The findings indicate that the absence of the chemotaxis gene <i>cheW</i> resulted in reduced motility of <i>Pseudoalteromonas marina</i>, accompanied by an increase in c-di-GMP content. The Δ<i>cheW</i> strain exhibited a higher capacity for biofilm formation compared to the wild-type strain. The extracellular protein content of the Δ<i>cheW</i> strain exhibited a significant 77% reduction, specifically in the flagellin content. The inducing activity of Δ<i>cheW</i> was reduced by 56% compared to the wild-type strain. This study highlights that the deficiency of the chemotaxis gene <i>cheW</i> inhibited larval settlement and metamorphosis in mussels through c-di-GMP regulation of extracellular protein production. It provides a novel ecological function of bacterial chemotaxis in regulating the larval settlement and metamorphosis of marine invertebrates.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemotaxis gene of a bacterium impacts larval settlement and metamorphosis in the marine mussel <i>Mytilus coruscus</i> via c-di-GMP controlling extracellular protein production.\",\"authors\":\"Yu Tao, Jiayi Mu, Lihua Peng, Jin-Long Yang, Xiao Liang\",\"doi\":\"10.1080/08927014.2024.2423806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial chemotaxis enhances bacterial adaptation to the environment and is important for biofilm formation. Biofilms play a key role in inducing larval settlement and metamorphosis in many marine invertebrates. However, the specific mechanisms by which bacterial chemotaxis influences larval settlement and metamorphosis in mussels remain unknown. The findings indicate that the absence of the chemotaxis gene <i>cheW</i> resulted in reduced motility of <i>Pseudoalteromonas marina</i>, accompanied by an increase in c-di-GMP content. The Δ<i>cheW</i> strain exhibited a higher capacity for biofilm formation compared to the wild-type strain. The extracellular protein content of the Δ<i>cheW</i> strain exhibited a significant 77% reduction, specifically in the flagellin content. The inducing activity of Δ<i>cheW</i> was reduced by 56% compared to the wild-type strain. This study highlights that the deficiency of the chemotaxis gene <i>cheW</i> inhibited larval settlement and metamorphosis in mussels through c-di-GMP regulation of extracellular protein production. It provides a novel ecological function of bacterial chemotaxis in regulating the larval settlement and metamorphosis of marine invertebrates.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2423806\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2423806","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌趋化性增强了细菌对环境的适应能力,对生物膜的形成非常重要。生物膜在诱导许多海洋无脊椎动物的幼虫定居和变态过程中发挥着关键作用。然而,细菌趋化作用影响贻贝幼虫定居和变态的具体机制尚不清楚。研究结果表明,缺乏趋化基因 cheW 会导致假交替单胞菌(Pseudoalteromonas marina)运动能力下降,同时 c-di-GMP 含量增加。与野生型菌株相比,ΔcheW 菌株的生物膜形成能力更强。ΔcheW 菌株的细胞外蛋白质含量显著减少 77%,尤其是鞭毛蛋白含量。与野生型菌株相比,ΔcheW 的诱导活性降低了 56%。这项研究强调,趋化基因cheW的缺失会通过c-di-GMP调节胞外蛋白的产生来抑制贻贝幼虫的定居和变态。它提供了细菌趋化在调节海洋无脊椎动物幼虫定居和变态过程中的一种新的生态功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemotaxis gene of a bacterium impacts larval settlement and metamorphosis in the marine mussel Mytilus coruscus via c-di-GMP controlling extracellular protein production.

Bacterial chemotaxis enhances bacterial adaptation to the environment and is important for biofilm formation. Biofilms play a key role in inducing larval settlement and metamorphosis in many marine invertebrates. However, the specific mechanisms by which bacterial chemotaxis influences larval settlement and metamorphosis in mussels remain unknown. The findings indicate that the absence of the chemotaxis gene cheW resulted in reduced motility of Pseudoalteromonas marina, accompanied by an increase in c-di-GMP content. The ΔcheW strain exhibited a higher capacity for biofilm formation compared to the wild-type strain. The extracellular protein content of the ΔcheW strain exhibited a significant 77% reduction, specifically in the flagellin content. The inducing activity of ΔcheW was reduced by 56% compared to the wild-type strain. This study highlights that the deficiency of the chemotaxis gene cheW inhibited larval settlement and metamorphosis in mussels through c-di-GMP regulation of extracellular protein production. It provides a novel ecological function of bacterial chemotaxis in regulating the larval settlement and metamorphosis of marine invertebrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
期刊最新文献
Chemotaxis gene of a bacterium impacts larval settlement and metamorphosis in the marine mussel Mytilus coruscus via c-di-GMP controlling extracellular protein production. Pyrrole-2-carboxylic acid inhibits biofilm formation and suppresses the virulence of Listeria monocytogenes. An antimicrobial metabolite n- hexadecenoic acid from marine sponge-associated bacteria Bacillus subtilis effectively inhibited biofilm forming multidrug-resistant P. aeruginosa. Effect of sphingosine and inoculum concentrations on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1