妇女健康倡议 "中的代谢表型与肥胖相关癌症风险。

Prasoona Karra, Sheetal Hardikar, Maci Winn, Garnet L Anderson, Benjamin Haaland, Aladdin H Shadyab, Marian L Neuhouser, Rebecca A Seguin-Fowler, Cynthia A Thomson, Mace Coday, Jean Wactawski-Wende, Marcia L Stefanick, Xiaochen Zhang, Ting-Yuan David Cheng, Shama Karanth, Yangbo Sun, Nazmus Saquib, Margaret S Pichardo, Su Yon Jung, Fred K Tabung, Scott A Summers, William L Holland, Thunder Jalili, Marc J Gunter, Mary C Playdon
{"title":"妇女健康倡议 \"中的代谢表型与肥胖相关癌症风险。","authors":"Prasoona Karra, Sheetal Hardikar, Maci Winn, Garnet L Anderson, Benjamin Haaland, Aladdin H Shadyab, Marian L Neuhouser, Rebecca A Seguin-Fowler, Cynthia A Thomson, Mace Coday, Jean Wactawski-Wende, Marcia L Stefanick, Xiaochen Zhang, Ting-Yuan David Cheng, Shama Karanth, Yangbo Sun, Nazmus Saquib, Margaret S Pichardo, Su Yon Jung, Fred K Tabung, Scott A Summers, William L Holland, Thunder Jalili, Marc J Gunter, Mary C Playdon","doi":"10.1158/1940-6207.CAPR-24-0082","DOIUrl":null,"url":null,"abstract":"<p><p>Body mass index (BMI) may misclassify obesity-related cancer (ORC) risk, as metabolic dysfunction can occur across BMI levels. We hypothesized that metabolic dysfunction at any BMI increases ORC risk compared to normal BMI without metabolic dysfunction. Postmenopausal women (n=20,593) in the Women's Health Initiative with baseline metabolic dysfunction biomarkers (blood pressure, fasting triglycerides, high-density lipoprotein-cholesterol, fasting glucose, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and high sensitive C-reactive protein (hs-CRP)) were included. Metabolic phenotype (metabolically healthy normal weight (MHNW), metabolically unhealthy normal weight (MUNW), metabolically healthy overweight/obese (MHO), metabolically unhealthy overweight/obese (MUO)) was classified using four definitions of metabolic dysfunction: (1) Wildman criteria, (2) National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III), (3) HOMA-IR, and (4) hs-CRP. Multivariable Cox proportional hazards regression, with death as a competing risk, was used to assess the association between metabolic phenotype and ORC risk. After a median (IQR) follow-up duration of 21 (IQR 15-22) years, 2,367 women developed an ORC. The risk of any ORC was elevated among MUNW (HR 1.12, 95% CI: 0.90-1.39), MHO (HR 1.15, 95% CI: 1.00-1.32), and MUO (HR 1.35, 95% CI: 1.18-1.54) compared with MHNW using Wildman criteria. Results were similar using ATP III criteria, hs-CRP alone, or HOMA-IR alone to define metabolic phenotype. Individuals with overweight or obesity with or without metabolic dysfunction were at higher risk of ORCs compared with metabolically healthy normal weight individuals. The magnitude of risk was greater among those with metabolic dysfunction, although the confidence intervals of each category overlapped.</p>","PeriodicalId":72514,"journal":{"name":"Cancer prevention research (Philadelphia, Pa.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic phenotype and risk of obesity-related cancers in the Women's Health Initiative.\",\"authors\":\"Prasoona Karra, Sheetal Hardikar, Maci Winn, Garnet L Anderson, Benjamin Haaland, Aladdin H Shadyab, Marian L Neuhouser, Rebecca A Seguin-Fowler, Cynthia A Thomson, Mace Coday, Jean Wactawski-Wende, Marcia L Stefanick, Xiaochen Zhang, Ting-Yuan David Cheng, Shama Karanth, Yangbo Sun, Nazmus Saquib, Margaret S Pichardo, Su Yon Jung, Fred K Tabung, Scott A Summers, William L Holland, Thunder Jalili, Marc J Gunter, Mary C Playdon\",\"doi\":\"10.1158/1940-6207.CAPR-24-0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Body mass index (BMI) may misclassify obesity-related cancer (ORC) risk, as metabolic dysfunction can occur across BMI levels. We hypothesized that metabolic dysfunction at any BMI increases ORC risk compared to normal BMI without metabolic dysfunction. Postmenopausal women (n=20,593) in the Women's Health Initiative with baseline metabolic dysfunction biomarkers (blood pressure, fasting triglycerides, high-density lipoprotein-cholesterol, fasting glucose, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and high sensitive C-reactive protein (hs-CRP)) were included. Metabolic phenotype (metabolically healthy normal weight (MHNW), metabolically unhealthy normal weight (MUNW), metabolically healthy overweight/obese (MHO), metabolically unhealthy overweight/obese (MUO)) was classified using four definitions of metabolic dysfunction: (1) Wildman criteria, (2) National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III), (3) HOMA-IR, and (4) hs-CRP. Multivariable Cox proportional hazards regression, with death as a competing risk, was used to assess the association between metabolic phenotype and ORC risk. After a median (IQR) follow-up duration of 21 (IQR 15-22) years, 2,367 women developed an ORC. The risk of any ORC was elevated among MUNW (HR 1.12, 95% CI: 0.90-1.39), MHO (HR 1.15, 95% CI: 1.00-1.32), and MUO (HR 1.35, 95% CI: 1.18-1.54) compared with MHNW using Wildman criteria. Results were similar using ATP III criteria, hs-CRP alone, or HOMA-IR alone to define metabolic phenotype. Individuals with overweight or obesity with or without metabolic dysfunction were at higher risk of ORCs compared with metabolically healthy normal weight individuals. The magnitude of risk was greater among those with metabolic dysfunction, although the confidence intervals of each category overlapped.</p>\",\"PeriodicalId\":72514,\"journal\":{\"name\":\"Cancer prevention research (Philadelphia, Pa.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer prevention research (Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/1940-6207.CAPR-24-0082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer prevention research (Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1940-6207.CAPR-24-0082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

体重指数(BMI)可能会误判肥胖相关癌症(ORC)的风险,因为代谢功能障碍可能发生在不同的体重指数水平上。我们假设,与没有代谢功能障碍的正常体重指数相比,任何体重指数下的代谢功能障碍都会增加与肥胖相关的癌症风险。我们纳入了 "妇女健康倡议"(Women's Health Initiative)中有代谢功能障碍生物标志物(血压、空腹甘油三酯、高密度脂蛋白胆固醇、空腹血糖、胰岛素抵抗静态模型评估(HOMA-IR)和高敏C反应蛋白(hs-CRP))基线的绝经后妇女(n=20,593)。代谢表型(代谢健康正常体重 (MHNW)、代谢不健康正常体重 (MUNW)、代谢健康超重/肥胖 (MHO)、代谢不健康超重/肥胖 (MUO))采用四种代谢功能障碍定义进行分类:(1) 怀尔德曼标准;(2) 美国国家胆固醇教育计划 (NCEP) 成人治疗小组 III (ATP III);(3) HOMA-IR 和 (4) hs-CRP。以死亡为竞争风险的多变量考克斯比例危险回归用于评估代谢表型与 ORC 风险之间的关联。经过中位数(IQR)为 21(IQR 15-22)年的随访,共有 2367 名女性患上了冠心病。与使用威尔曼标准的 MHNW 相比,MUNW(HR 1.12,95% CI:0.90-1.39)、MHO(HR 1.15,95% CI:1.00-1.32)和 MUO(HR 1.35,95% CI:1.18-1.54)发生任何 ORC 的风险更高。使用 ATP III 标准、单独使用 hs-CRP 或单独使用 HOMA-IR 来定义代谢表型的结果相似。与代谢健康的正常体重人群相比,伴有或不伴有代谢功能障碍的超重或肥胖人群患 ORC 的风险更高。虽然每个类别的置信区间有所重叠,但代谢功能障碍患者的风险程度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolic phenotype and risk of obesity-related cancers in the Women's Health Initiative.

Body mass index (BMI) may misclassify obesity-related cancer (ORC) risk, as metabolic dysfunction can occur across BMI levels. We hypothesized that metabolic dysfunction at any BMI increases ORC risk compared to normal BMI without metabolic dysfunction. Postmenopausal women (n=20,593) in the Women's Health Initiative with baseline metabolic dysfunction biomarkers (blood pressure, fasting triglycerides, high-density lipoprotein-cholesterol, fasting glucose, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and high sensitive C-reactive protein (hs-CRP)) were included. Metabolic phenotype (metabolically healthy normal weight (MHNW), metabolically unhealthy normal weight (MUNW), metabolically healthy overweight/obese (MHO), metabolically unhealthy overweight/obese (MUO)) was classified using four definitions of metabolic dysfunction: (1) Wildman criteria, (2) National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III), (3) HOMA-IR, and (4) hs-CRP. Multivariable Cox proportional hazards regression, with death as a competing risk, was used to assess the association between metabolic phenotype and ORC risk. After a median (IQR) follow-up duration of 21 (IQR 15-22) years, 2,367 women developed an ORC. The risk of any ORC was elevated among MUNW (HR 1.12, 95% CI: 0.90-1.39), MHO (HR 1.15, 95% CI: 1.00-1.32), and MUO (HR 1.35, 95% CI: 1.18-1.54) compared with MHNW using Wildman criteria. Results were similar using ATP III criteria, hs-CRP alone, or HOMA-IR alone to define metabolic phenotype. Individuals with overweight or obesity with or without metabolic dysfunction were at higher risk of ORCs compared with metabolically healthy normal weight individuals. The magnitude of risk was greater among those with metabolic dysfunction, although the confidence intervals of each category overlapped.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calculating future 10-year breast cancer risks in risk-adapted surveillance: A method comparison and application in clinical practice. Metabolic phenotype and risk of obesity-related cancers in the Women's Health Initiative. What's the Cost: Financial Toxicity and Screening Fatigue in Li-Fraumeni Syndrome. Black raspberry modulates cecal and oral microbiome at the early stage of a dibenzo[def,p]chrysene-induced murine oral cancer model. Harnessing Artificial Intelligence for the Detection and Management of Colorectal Cancer Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1