有机铁电体二异丙基碘化铵(dipaI)的导电性和介电弛豫研究

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Materials Science: Materials in Electronics Pub Date : 2024-11-16 DOI:10.1007/s10854-024-13845-1
Mamataj Khatun, Ekramul Kabir
{"title":"有机铁电体二异丙基碘化铵(dipaI)的导电性和介电弛豫研究","authors":"Mamataj Khatun,&nbsp;Ekramul Kabir","doi":"10.1007/s10854-024-13845-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we delve into the dielectric response and electrical conductivity behavior of the innovative organic ferroelectric Diisopropylammonium Iodide (dipaI), with a focus on power dispersion and the universal relaxation law. We employ impedance spectroscopy, dielectric relaxation, and AC conductivity analyses across a broad spectrum of temperatures (343 K to 443 K) and frequencies (1 kHz to 20 MHz). Using the Maxwell–Wagner capacitor model, we elucidate the complex impedance using an equivalent circuit. In the equivalent circuit, elements like resistors and capacitors are arranged in a series and parallel configuration to represent the dielectric and conductive characteristics of the material. By analyzing the impedance spectrum using this model, we distinguish between the contributions from grain interiors and grain boundaries. The investigation of dielectric relaxation involves the importance of the Havriliak-Negami (HN) formula to interpret experimental findings. Unlike simpler models like the Debye relaxation, which assumes a single, discrete relaxation time, the HN formula accounts for a distribution of relaxation times, providing a more nuanced description of how polarization evolves over time. Additionally, the universal power law utilizes the parameter 'n' to describe the behavior of the electrical conductivity on the frequency, which is predicated on the hopping of charge carriers over potential barriers.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 32","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Electrical Conductivity and Dielectric Relaxation in the Organic Ferroelectric Diisopropylammonium Iodide (dipaI)\",\"authors\":\"Mamataj Khatun,&nbsp;Ekramul Kabir\",\"doi\":\"10.1007/s10854-024-13845-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we delve into the dielectric response and electrical conductivity behavior of the innovative organic ferroelectric Diisopropylammonium Iodide (dipaI), with a focus on power dispersion and the universal relaxation law. We employ impedance spectroscopy, dielectric relaxation, and AC conductivity analyses across a broad spectrum of temperatures (343 K to 443 K) and frequencies (1 kHz to 20 MHz). Using the Maxwell–Wagner capacitor model, we elucidate the complex impedance using an equivalent circuit. In the equivalent circuit, elements like resistors and capacitors are arranged in a series and parallel configuration to represent the dielectric and conductive characteristics of the material. By analyzing the impedance spectrum using this model, we distinguish between the contributions from grain interiors and grain boundaries. The investigation of dielectric relaxation involves the importance of the Havriliak-Negami (HN) formula to interpret experimental findings. Unlike simpler models like the Debye relaxation, which assumes a single, discrete relaxation time, the HN formula accounts for a distribution of relaxation times, providing a more nuanced description of how polarization evolves over time. Additionally, the universal power law utilizes the parameter 'n' to describe the behavior of the electrical conductivity on the frequency, which is predicated on the hopping of charge carriers over potential barriers.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"35 32\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-13845-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13845-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们深入研究了创新型有机铁电体二异丙基碘化铵(dipaI)的介电响应和导电行为,重点是功率分散和普遍弛豫定律。我们采用阻抗光谱法、介电弛豫法和交流电导率分析法,在广泛的温度(343 K 至 443 K)和频率(1 kHz 至 20 MHz)范围内进行分析。利用 Maxwell-Wagner 电容器模型,我们使用等效电路阐明了复合阻抗。在等效电路中,电阻器和电容器等元件以串联和并联配置排列,以表示材料的介电和导电特性。通过使用该模型分析阻抗谱,我们可以区分晶粒内部和晶粒边界的贡献。介电弛豫的研究涉及到 Havriliak-Negami(HN)公式对解释实验结果的重要性。与假设单一、离散弛豫时间的德拜弛豫等简单模型不同,HN 公式考虑了弛豫时间的分布,对极化如何随时间演变提供了更细致的描述。此外,通用幂律利用参数 "n "来描述电导率在频率上的行为,而这是以电荷载流子在势垒上的跳跃为前提的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Study of Electrical Conductivity and Dielectric Relaxation in the Organic Ferroelectric Diisopropylammonium Iodide (dipaI)

In this work, we delve into the dielectric response and electrical conductivity behavior of the innovative organic ferroelectric Diisopropylammonium Iodide (dipaI), with a focus on power dispersion and the universal relaxation law. We employ impedance spectroscopy, dielectric relaxation, and AC conductivity analyses across a broad spectrum of temperatures (343 K to 443 K) and frequencies (1 kHz to 20 MHz). Using the Maxwell–Wagner capacitor model, we elucidate the complex impedance using an equivalent circuit. In the equivalent circuit, elements like resistors and capacitors are arranged in a series and parallel configuration to represent the dielectric and conductive characteristics of the material. By analyzing the impedance spectrum using this model, we distinguish between the contributions from grain interiors and grain boundaries. The investigation of dielectric relaxation involves the importance of the Havriliak-Negami (HN) formula to interpret experimental findings. Unlike simpler models like the Debye relaxation, which assumes a single, discrete relaxation time, the HN formula accounts for a distribution of relaxation times, providing a more nuanced description of how polarization evolves over time. Additionally, the universal power law utilizes the parameter 'n' to describe the behavior of the electrical conductivity on the frequency, which is predicated on the hopping of charge carriers over potential barriers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
期刊最新文献
Enhancing the heterointerface stability of Al2O3/Ba0.5Sr0.5TiO3/Al2O3 composite thin films by adaptive anodizing method under high electric field Electrochemical properties of CuxCo1-xFe2O4 nanoparticles via cationic substitution for supercapacitor applications Degradation of Congo Red using polymer-stabilized metal nanocatalyst Structural, thermal, and optical properties of gold nanoparticle-doped bismuth borate glasses: effect of concentration Optical and scintillation properties of Tm-doped Ca3TaGa3Si2O14 single crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1