Idri Hastuty Siregar , Marta Camps-Arbestain , Tao Wang , Miko U.F. Kirschbaum , Gabor Kereszturi , Alan Palmer
{"title":"温度升高会加速温带山地森林的碳循环,但不会降低土壤碳储量","authors":"Idri Hastuty Siregar , Marta Camps-Arbestain , Tao Wang , Miko U.F. Kirschbaum , Gabor Kereszturi , Alan Palmer","doi":"10.1016/j.geodrs.2024.e00889","DOIUrl":null,"url":null,"abstract":"<div><div>Global warming is expected to accelerate the cycling of soil organic carbon (SOC) and the assimilation of new carbon, but the net effect of those counteracting accelerations and their ultimate effects on SOC are still uncertain. This hinders the prediction of long-term changes in biospheric carbon stocks and SOC-climate feedbacks. Here, we studied the long-term effect of temperature on carbon cycling across a 3.2 °C altitudinal temperature gradient in a temperate forest ecosystem in New Zealand. Across the gradient, soil respiration rates increased with increasing temperature from 9.0 to 10.4 tC ha<sup>−1</sup> yr<sup>−1</sup>, but SOC stocks down to 85 cm depth also tended to increase, from 154 to 176 tC ha<sup>−1</sup>, albeit non-significantly (<em>P</em> = 0.06). This system was able to maintain higher soil respiration rates at higher temperatures without reducing SOC because the higher respiration rates were sustained by higher litterfall rates. Aboveground litterfall increased from 1.8 to 2.4 tC ha<sup>−1</sup> yr<sup>−1</sup> and estimated belowground C inputs increased from 7.2 to 8.0 tC ha<sup>−1</sup> yr<sup>−1</sup> along the temperature gradient. These higher fluxes were associated with significantly (<em>P</em> < 0.05) increased biomass at higher temperatures. As a direct measure of the effect of temperature on carbon cycling processes, we also calculated the turnover rate of forest litter which increased about 1.4-fold across the temperature gradient. This study demonstrates that higher temperatures along the thermal gradient increased plant carbon inputs through enhanced gross primary production, which counteracted SOC losses through temperature-enhanced soil respiration. These results suggest that temperature sensitivities of both plant carbon inputs and SOC losses must be considered for predicting SOC-climate feedbacks.</div></div>","PeriodicalId":56001,"journal":{"name":"Geoderma Regional","volume":"39 ","pages":"Article e00889"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher temperature accelerates carbon cycling in a temperate montane forest without decreasing soil carbon stocks\",\"authors\":\"Idri Hastuty Siregar , Marta Camps-Arbestain , Tao Wang , Miko U.F. Kirschbaum , Gabor Kereszturi , Alan Palmer\",\"doi\":\"10.1016/j.geodrs.2024.e00889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Global warming is expected to accelerate the cycling of soil organic carbon (SOC) and the assimilation of new carbon, but the net effect of those counteracting accelerations and their ultimate effects on SOC are still uncertain. This hinders the prediction of long-term changes in biospheric carbon stocks and SOC-climate feedbacks. Here, we studied the long-term effect of temperature on carbon cycling across a 3.2 °C altitudinal temperature gradient in a temperate forest ecosystem in New Zealand. Across the gradient, soil respiration rates increased with increasing temperature from 9.0 to 10.4 tC ha<sup>−1</sup> yr<sup>−1</sup>, but SOC stocks down to 85 cm depth also tended to increase, from 154 to 176 tC ha<sup>−1</sup>, albeit non-significantly (<em>P</em> = 0.06). This system was able to maintain higher soil respiration rates at higher temperatures without reducing SOC because the higher respiration rates were sustained by higher litterfall rates. Aboveground litterfall increased from 1.8 to 2.4 tC ha<sup>−1</sup> yr<sup>−1</sup> and estimated belowground C inputs increased from 7.2 to 8.0 tC ha<sup>−1</sup> yr<sup>−1</sup> along the temperature gradient. These higher fluxes were associated with significantly (<em>P</em> < 0.05) increased biomass at higher temperatures. As a direct measure of the effect of temperature on carbon cycling processes, we also calculated the turnover rate of forest litter which increased about 1.4-fold across the temperature gradient. This study demonstrates that higher temperatures along the thermal gradient increased plant carbon inputs through enhanced gross primary production, which counteracted SOC losses through temperature-enhanced soil respiration. These results suggest that temperature sensitivities of both plant carbon inputs and SOC losses must be considered for predicting SOC-climate feedbacks.</div></div>\",\"PeriodicalId\":56001,\"journal\":{\"name\":\"Geoderma Regional\",\"volume\":\"39 \",\"pages\":\"Article e00889\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma Regional\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352009424001366\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma Regional","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352009424001366","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Higher temperature accelerates carbon cycling in a temperate montane forest without decreasing soil carbon stocks
Global warming is expected to accelerate the cycling of soil organic carbon (SOC) and the assimilation of new carbon, but the net effect of those counteracting accelerations and their ultimate effects on SOC are still uncertain. This hinders the prediction of long-term changes in biospheric carbon stocks and SOC-climate feedbacks. Here, we studied the long-term effect of temperature on carbon cycling across a 3.2 °C altitudinal temperature gradient in a temperate forest ecosystem in New Zealand. Across the gradient, soil respiration rates increased with increasing temperature from 9.0 to 10.4 tC ha−1 yr−1, but SOC stocks down to 85 cm depth also tended to increase, from 154 to 176 tC ha−1, albeit non-significantly (P = 0.06). This system was able to maintain higher soil respiration rates at higher temperatures without reducing SOC because the higher respiration rates were sustained by higher litterfall rates. Aboveground litterfall increased from 1.8 to 2.4 tC ha−1 yr−1 and estimated belowground C inputs increased from 7.2 to 8.0 tC ha−1 yr−1 along the temperature gradient. These higher fluxes were associated with significantly (P < 0.05) increased biomass at higher temperatures. As a direct measure of the effect of temperature on carbon cycling processes, we also calculated the turnover rate of forest litter which increased about 1.4-fold across the temperature gradient. This study demonstrates that higher temperatures along the thermal gradient increased plant carbon inputs through enhanced gross primary production, which counteracted SOC losses through temperature-enhanced soil respiration. These results suggest that temperature sensitivities of both plant carbon inputs and SOC losses must be considered for predicting SOC-climate feedbacks.
期刊介绍:
Global issues require studies and solutions on national and regional levels. Geoderma Regional focuses on studies that increase understanding and advance our scientific knowledge of soils in all regions of the world. The journal embraces every aspect of soil science and welcomes reviews of regional progress.