测量热容量的瞬态热流法:以铜和 VO2 为例

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Applied Physics Pub Date : 2024-11-13 DOI:10.1016/j.cap.2024.11.005
Dongjin Jang , Minsik Kong , Jong Mok Ok
{"title":"测量热容量的瞬态热流法:以铜和 VO2 为例","authors":"Dongjin Jang ,&nbsp;Minsik Kong ,&nbsp;Jong Mok Ok","doi":"10.1016/j.cap.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>Many quantum materials undergo phase transitions above room temperature. However, thermodynamic evidence of these phase transitions is relatively scarce. For instance, detailed specific heat anomalies have rarely been reported for the transitions. In addition to considering intrinsic factors that obscure the thermodynamic manifestation of relevant degrees of freedom, it is also important to revisit measurement techniques based on firmly established physical principles. In this study, we introduce a transient heat-flux method for measuring heat capacity of solids, and report a specific heat anomaly in VO<sub>2</sub>, along with the reproduction of the standard specific heat capacity data of Cu. At present, our method is capable of measuring heat capacities ranging from 1 J/mol⋅K to 400 J/mol⋅K with an uncertainty of 5% across a temperature range from room temperature to 100 °C.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 55-59"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient heat-flux method for measuring heat capacity: Examples from Cu and VO2\",\"authors\":\"Dongjin Jang ,&nbsp;Minsik Kong ,&nbsp;Jong Mok Ok\",\"doi\":\"10.1016/j.cap.2024.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many quantum materials undergo phase transitions above room temperature. However, thermodynamic evidence of these phase transitions is relatively scarce. For instance, detailed specific heat anomalies have rarely been reported for the transitions. In addition to considering intrinsic factors that obscure the thermodynamic manifestation of relevant degrees of freedom, it is also important to revisit measurement techniques based on firmly established physical principles. In this study, we introduce a transient heat-flux method for measuring heat capacity of solids, and report a specific heat anomaly in VO<sub>2</sub>, along with the reproduction of the standard specific heat capacity data of Cu. At present, our method is capable of measuring heat capacities ranging from 1 J/mol⋅K to 400 J/mol⋅K with an uncertainty of 5% across a temperature range from room temperature to 100 °C.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"69 \",\"pages\":\"Pages 55-59\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924002438\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002438","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

许多量子材料在室温以上会发生相变。然而,这些相变的热力学证据却相对较少。例如,有关相变的详细比热反常现象就鲜有报道。除了考虑遮蔽相关自由度热力学表现的内在因素外,重新审视基于牢固确立的物理原理的测量技术也很重要。在本研究中,我们介绍了一种测量固体热容的瞬态热流方法,并报告了 VO2 中的比热异常现象,同时还再现了铜的标准比热容数据。目前,我们的方法能够测量从 1 J/mol⋅K 到 400 J/mol⋅K 的热容量,测量温度范围从室温到 100 °C,不确定度为 5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transient heat-flux method for measuring heat capacity: Examples from Cu and VO2
Many quantum materials undergo phase transitions above room temperature. However, thermodynamic evidence of these phase transitions is relatively scarce. For instance, detailed specific heat anomalies have rarely been reported for the transitions. In addition to considering intrinsic factors that obscure the thermodynamic manifestation of relevant degrees of freedom, it is also important to revisit measurement techniques based on firmly established physical principles. In this study, we introduce a transient heat-flux method for measuring heat capacity of solids, and report a specific heat anomaly in VO2, along with the reproduction of the standard specific heat capacity data of Cu. At present, our method is capable of measuring heat capacities ranging from 1 J/mol⋅K to 400 J/mol⋅K with an uncertainty of 5% across a temperature range from room temperature to 100 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
期刊最新文献
Editorial Board Synergistic impact of Al2O3 capping layer and deposition temperature for enhancing the ferroelectricity of undoped-HfO2 thin films Improved mobility in InAs nanowire FETs with sulfur-based surface treatment Graphene/WS2/LaVO3 heterojunction for self-powered, high-speed, and broadband photodetectors Oxidation effects on the optical and electrical properties of MoS2 under controlled baking temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1