正面聚合具有可控机械性能和固有自恢复能力的丙烯酰胺/GelMA/明胶水凝胶

IF 5.8 2区 化学 Q1 POLYMER SCIENCE European Polymer Journal Pub Date : 2024-11-04 DOI:10.1016/j.eurpolymj.2024.113551
Luana Di Lisa , Mariangela Rea , Daniele Nuvoli , Maria Letizia Focarete , Cristiano Albonetti , Alberto Mariani
{"title":"正面聚合具有可控机械性能和固有自恢复能力的丙烯酰胺/GelMA/明胶水凝胶","authors":"Luana Di Lisa ,&nbsp;Mariangela Rea ,&nbsp;Daniele Nuvoli ,&nbsp;Maria Letizia Focarete ,&nbsp;Cristiano Albonetti ,&nbsp;Alberto Mariani","doi":"10.1016/j.eurpolymj.2024.113551","DOIUrl":null,"url":null,"abstract":"<div><div>Low mechanical resistance represents one of the significant problems of hydrogels, limiting their applicability in many fields. One approach to overcome this issue is synthesizing interpenetrating polymeric networks. In this work, the frontal polymerization technique was used to synthesize two series of novel hydrogels: (i) poly(acrylamide) (PAAm)-based hydrogels copolymerized/crosslinked with methacrylate gelatin (GelMA) (AAm-GelMA copolymer networks), and (ii) semi-IPN made of AAm-GelMA copolymer networks and a physically crosslinked gelatin network. With the final objective of improving the rheological, mechanical, morphological, thermal, and swelling properties of PAAm hydrogels, GelMA with two different degrees of methacrylation (30 and 75 mol%) was used. Interactions between GelMA chains, which give rise to physical network formation (i.e., GelMA-GelMA interactions), resulted in very efficient crosslinking for PAAm-based hydrogels, requiring a significantly lower methacrylic group concentration (0.04 mol%) for hydrogel formation compared to N,N′-methylene-bis-acrylamide (1 mol%), which is the agent typically used as a crosslinker for PAAm. Furthermore, the degree of GelMA methacrylation markedly affected the properties of the hydrogels. For example, regarding the swelling degree, hydrogels containing 22 wt% of GELMA30 had an SR% of 2870, while those containing the same amount of GELMA75 swelled much less (870 %). The introduction of gelatin as a secondary network in semi-IPNs influenced the rheological and mechanical properties, resulting in increased hydrogel modulus and stiffness attributed to enhanced physical interactions within the network. Finally, dynamic rheological shear strain and cyclic loading compression tests demonstrated exceptional recovery capabilities in all hydrogel formulations: samples subjected to alternating low (0.1 %) and high (300 % or 10 %) shear strain demonstrated a complete and prompt recovery of G′ and G″ values.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113551"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frontal polymerization of acrylamide/GelMA/gelatin hydrogels with controlled mechanical properties and inherent self-recovery\",\"authors\":\"Luana Di Lisa ,&nbsp;Mariangela Rea ,&nbsp;Daniele Nuvoli ,&nbsp;Maria Letizia Focarete ,&nbsp;Cristiano Albonetti ,&nbsp;Alberto Mariani\",\"doi\":\"10.1016/j.eurpolymj.2024.113551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low mechanical resistance represents one of the significant problems of hydrogels, limiting their applicability in many fields. One approach to overcome this issue is synthesizing interpenetrating polymeric networks. In this work, the frontal polymerization technique was used to synthesize two series of novel hydrogels: (i) poly(acrylamide) (PAAm)-based hydrogels copolymerized/crosslinked with methacrylate gelatin (GelMA) (AAm-GelMA copolymer networks), and (ii) semi-IPN made of AAm-GelMA copolymer networks and a physically crosslinked gelatin network. With the final objective of improving the rheological, mechanical, morphological, thermal, and swelling properties of PAAm hydrogels, GelMA with two different degrees of methacrylation (30 and 75 mol%) was used. Interactions between GelMA chains, which give rise to physical network formation (i.e., GelMA-GelMA interactions), resulted in very efficient crosslinking for PAAm-based hydrogels, requiring a significantly lower methacrylic group concentration (0.04 mol%) for hydrogel formation compared to N,N′-methylene-bis-acrylamide (1 mol%), which is the agent typically used as a crosslinker for PAAm. Furthermore, the degree of GelMA methacrylation markedly affected the properties of the hydrogels. For example, regarding the swelling degree, hydrogels containing 22 wt% of GELMA30 had an SR% of 2870, while those containing the same amount of GELMA75 swelled much less (870 %). The introduction of gelatin as a secondary network in semi-IPNs influenced the rheological and mechanical properties, resulting in increased hydrogel modulus and stiffness attributed to enhanced physical interactions within the network. Finally, dynamic rheological shear strain and cyclic loading compression tests demonstrated exceptional recovery capabilities in all hydrogel formulations: samples subjected to alternating low (0.1 %) and high (300 % or 10 %) shear strain demonstrated a complete and prompt recovery of G′ and G″ values.</div></div>\",\"PeriodicalId\":315,\"journal\":{\"name\":\"European Polymer Journal\",\"volume\":\"221 \",\"pages\":\"Article 113551\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014305724008127\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724008127","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

低机械阻力是水凝胶的主要问题之一,限制了其在许多领域的应用。克服这一问题的方法之一是合成互穿聚合物网络。本研究采用正面聚合技术合成了两个系列的新型水凝胶:(i) 与甲基丙烯酸明胶(GelMA)共聚/交联的聚(丙烯酰胺)(PAAm)基水凝胶(AAm-GelMA 共聚物网络),以及 (ii) 由 AAm-GelMA 共聚物网络和物理交联明胶网络组成的半 IPN。为了改善 PAAm 水凝胶的流变、机械、形态、热和膨胀特性,我们使用了两种不同甲基丙烯酸化程度(30 和 75 摩尔%)的 GelMA。与通常用作 PAAm 交联剂的 N,N′-亚甲基双丙烯酰胺(1 摩尔%)相比,形成水凝胶所需的甲基丙烯酸基团浓度(0.04 摩尔%)要低得多。此外,GelMA 甲基丙烯酸化程度对水凝胶的性能也有明显影响。例如,在溶胀度方面,含有 22 wt% GELMA30 的水凝胶的 SR% 为 2870,而含有相同数量 GELMA75 的水凝胶的溶胀度要低得多(870%)。在半 IPN 中引入明胶作为辅助网络会影响流变和机械性能,导致水凝胶模量和硬度增加,这归因于网络内物理相互作用的增强。最后,动态流变剪切应变和循环加载压缩测试表明,所有水凝胶配方都具有卓越的恢复能力:交替承受低(0.1%)和高(300% 或 10%)剪切应变的样品都能迅速完全恢复 G′和 G″值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frontal polymerization of acrylamide/GelMA/gelatin hydrogels with controlled mechanical properties and inherent self-recovery
Low mechanical resistance represents one of the significant problems of hydrogels, limiting their applicability in many fields. One approach to overcome this issue is synthesizing interpenetrating polymeric networks. In this work, the frontal polymerization technique was used to synthesize two series of novel hydrogels: (i) poly(acrylamide) (PAAm)-based hydrogels copolymerized/crosslinked with methacrylate gelatin (GelMA) (AAm-GelMA copolymer networks), and (ii) semi-IPN made of AAm-GelMA copolymer networks and a physically crosslinked gelatin network. With the final objective of improving the rheological, mechanical, morphological, thermal, and swelling properties of PAAm hydrogels, GelMA with two different degrees of methacrylation (30 and 75 mol%) was used. Interactions between GelMA chains, which give rise to physical network formation (i.e., GelMA-GelMA interactions), resulted in very efficient crosslinking for PAAm-based hydrogels, requiring a significantly lower methacrylic group concentration (0.04 mol%) for hydrogel formation compared to N,N′-methylene-bis-acrylamide (1 mol%), which is the agent typically used as a crosslinker for PAAm. Furthermore, the degree of GelMA methacrylation markedly affected the properties of the hydrogels. For example, regarding the swelling degree, hydrogels containing 22 wt% of GELMA30 had an SR% of 2870, while those containing the same amount of GELMA75 swelled much less (870 %). The introduction of gelatin as a secondary network in semi-IPNs influenced the rheological and mechanical properties, resulting in increased hydrogel modulus and stiffness attributed to enhanced physical interactions within the network. Finally, dynamic rheological shear strain and cyclic loading compression tests demonstrated exceptional recovery capabilities in all hydrogel formulations: samples subjected to alternating low (0.1 %) and high (300 % or 10 %) shear strain demonstrated a complete and prompt recovery of G′ and G″ values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Polymer Journal
European Polymer Journal 化学-高分子科学
CiteScore
9.90
自引率
10.00%
发文量
691
审稿时长
23 days
期刊介绍: European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas: Polymer synthesis and functionalization • Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers. Stimuli-responsive polymers • Including shape memory and self-healing polymers. Supramolecular polymers and self-assembly • Molecular recognition and higher order polymer structures. Renewable and sustainable polymers • Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites. Polymers at interfaces and surfaces • Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications. Biomedical applications and nanomedicine • Polymers for regenerative medicine, drug delivery molecular release and gene therapy The scope of European Polymer Journal no longer includes Polymer Physics.
期刊最新文献
Graphical abstract TOC Graphical abstract TOC Contents continued Editorial Board Constructing boiling water resistant and flame-retardant wood composites based on enzyme catalyzed synergistic high branching crosslinking strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1