Sjoukje I. de Lange, Anne van der Wilk, Claire Chassagne, Waqas Ali, Maximilian P. Born, Kristian Brodersen, Antonius J. F. Hoitink, Kryss Waldschläger
{"title":"移动的水下沙丘捕获粘土絮状物","authors":"Sjoukje I. de Lange, Anne van der Wilk, Claire Chassagne, Waqas Ali, Maximilian P. Born, Kristian Brodersen, Antonius J. F. Hoitink, Kryss Waldschläger","doi":"10.1038/s43247-024-01901-x","DOIUrl":null,"url":null,"abstract":"Recent research highlights the abundance of floccule (flocs) in rivers, formed by aggregation of clay particles with organic matter. These flocs affect the transport and the eventual fate of clay. Flocs exhibit distinct behaviour from the unflocculated sedimentary counterparts: they can deform and break, and have higher settling velocities, which may in turn cause flocs to deposit and possibly interact with the riverbed. Here, we conducted systematic experiments in a laboratory flume to identify the mechanisms by which flocs and bedforms interact. Flocs showed a saltating (bouncing) behaviour, and were incorporated in the sediment bed as single flocs, clusters, or strings, via deposition and burial in the lee of a dune. Dune geometry was negligibly impacted by the presence of flocs. In natural systems, the burial of flocculated clay particles can affect contaminant spreading, aquatic ecology, the interpretation of deposition patterns, and clay transport. Flocculated clay particles exhibit a bouncing behaviour and can be incorporated into the bed as single flocs, clusters, or strings and revealing significant implications for contaminant transport and ecological dynamics in rivers, according to laboratory flume experiment results.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01901-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Migrating subaqueous dunes capture clay flocs\",\"authors\":\"Sjoukje I. de Lange, Anne van der Wilk, Claire Chassagne, Waqas Ali, Maximilian P. Born, Kristian Brodersen, Antonius J. F. Hoitink, Kryss Waldschläger\",\"doi\":\"10.1038/s43247-024-01901-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research highlights the abundance of floccule (flocs) in rivers, formed by aggregation of clay particles with organic matter. These flocs affect the transport and the eventual fate of clay. Flocs exhibit distinct behaviour from the unflocculated sedimentary counterparts: they can deform and break, and have higher settling velocities, which may in turn cause flocs to deposit and possibly interact with the riverbed. Here, we conducted systematic experiments in a laboratory flume to identify the mechanisms by which flocs and bedforms interact. Flocs showed a saltating (bouncing) behaviour, and were incorporated in the sediment bed as single flocs, clusters, or strings, via deposition and burial in the lee of a dune. Dune geometry was negligibly impacted by the presence of flocs. In natural systems, the burial of flocculated clay particles can affect contaminant spreading, aquatic ecology, the interpretation of deposition patterns, and clay transport. Flocculated clay particles exhibit a bouncing behaviour and can be incorporated into the bed as single flocs, clusters, or strings and revealing significant implications for contaminant transport and ecological dynamics in rivers, according to laboratory flume experiment results.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01901-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01901-x\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01901-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Recent research highlights the abundance of floccule (flocs) in rivers, formed by aggregation of clay particles with organic matter. These flocs affect the transport and the eventual fate of clay. Flocs exhibit distinct behaviour from the unflocculated sedimentary counterparts: they can deform and break, and have higher settling velocities, which may in turn cause flocs to deposit and possibly interact with the riverbed. Here, we conducted systematic experiments in a laboratory flume to identify the mechanisms by which flocs and bedforms interact. Flocs showed a saltating (bouncing) behaviour, and were incorporated in the sediment bed as single flocs, clusters, or strings, via deposition and burial in the lee of a dune. Dune geometry was negligibly impacted by the presence of flocs. In natural systems, the burial of flocculated clay particles can affect contaminant spreading, aquatic ecology, the interpretation of deposition patterns, and clay transport. Flocculated clay particles exhibit a bouncing behaviour and can be incorporated into the bed as single flocs, clusters, or strings and revealing significant implications for contaminant transport and ecological dynamics in rivers, according to laboratory flume experiment results.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.