Tae-Hoon Kim, Mobeen Shahroz, Bayan Alabdullah, Nisreen Innab, Jamel Baili, Muhammad Umer, Fiaz Majeed, Imran Ashraf
{"title":"用于叶病检测的 ANFIS 模糊卷积神经网络模型。","authors":"Tae-Hoon Kim, Mobeen Shahroz, Bayan Alabdullah, Nisreen Innab, Jamel Baili, Muhammad Umer, Fiaz Majeed, Imran Ashraf","doi":"10.3389/fpls.2024.1465960","DOIUrl":null,"url":null,"abstract":"<p><p>Leaf disease detection is critical in agriculture, as it directly impacts crop health, yield, and quality. Early and accurate detection of leaf diseases can prevent the spread of infections, reduce the need for chemical treatments, and minimize crop losses. This not only ensures food security but also supports sustainable farming practices. Effective leaf disease detection systems empower farmers with the knowledge to take timely actions, leading to healthier crops and more efficient resource management. In an era of increasing global food demand and environmental challenges, advanced leaf disease detection technologies are indispensable for modern agriculture. This study presents an innovative approach for detecting pepper bell leaf disease using an ANFIS Fuzzy convolutional neural network (CNN) integrated with local binary pattern (LBP) features. Experiments involve using the models without LBP, as well as, with LBP features. For both sets of experiments, the proposed ANFIS CNN model performs superbly. It shows an accuracy score of 0.8478 without using LBP features while its precision, recall, and F1 scores are 0.8959, 0.9045, and 0.8953, respectively. Incorporating LBP features, the proposed model achieved exceptional performance, with accuracy, precision, recall, and an F1 score of higher than 99%. Comprehensive comparisons with state-of-the-art techniques further highlight the superiority of the proposed method. Additionally, cross-validation was applied to ensure the robustness and reliability of the results. This approach demonstrates a significant advancement in agricultural disease detection, promising enhanced accuracy and efficiency in real-world applications.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1465960"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577083/pdf/","citationCount":"0","resultStr":"{\"title\":\"ANFIS Fuzzy convolutional neural network model for leaf disease detection.\",\"authors\":\"Tae-Hoon Kim, Mobeen Shahroz, Bayan Alabdullah, Nisreen Innab, Jamel Baili, Muhammad Umer, Fiaz Majeed, Imran Ashraf\",\"doi\":\"10.3389/fpls.2024.1465960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leaf disease detection is critical in agriculture, as it directly impacts crop health, yield, and quality. Early and accurate detection of leaf diseases can prevent the spread of infections, reduce the need for chemical treatments, and minimize crop losses. This not only ensures food security but also supports sustainable farming practices. Effective leaf disease detection systems empower farmers with the knowledge to take timely actions, leading to healthier crops and more efficient resource management. In an era of increasing global food demand and environmental challenges, advanced leaf disease detection technologies are indispensable for modern agriculture. This study presents an innovative approach for detecting pepper bell leaf disease using an ANFIS Fuzzy convolutional neural network (CNN) integrated with local binary pattern (LBP) features. Experiments involve using the models without LBP, as well as, with LBP features. For both sets of experiments, the proposed ANFIS CNN model performs superbly. It shows an accuracy score of 0.8478 without using LBP features while its precision, recall, and F1 scores are 0.8959, 0.9045, and 0.8953, respectively. Incorporating LBP features, the proposed model achieved exceptional performance, with accuracy, precision, recall, and an F1 score of higher than 99%. Comprehensive comparisons with state-of-the-art techniques further highlight the superiority of the proposed method. Additionally, cross-validation was applied to ensure the robustness and reliability of the results. This approach demonstrates a significant advancement in agricultural disease detection, promising enhanced accuracy and efficiency in real-world applications.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":\"15 \",\"pages\":\"1465960\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2024.1465960\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1465960","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
ANFIS Fuzzy convolutional neural network model for leaf disease detection.
Leaf disease detection is critical in agriculture, as it directly impacts crop health, yield, and quality. Early and accurate detection of leaf diseases can prevent the spread of infections, reduce the need for chemical treatments, and minimize crop losses. This not only ensures food security but also supports sustainable farming practices. Effective leaf disease detection systems empower farmers with the knowledge to take timely actions, leading to healthier crops and more efficient resource management. In an era of increasing global food demand and environmental challenges, advanced leaf disease detection technologies are indispensable for modern agriculture. This study presents an innovative approach for detecting pepper bell leaf disease using an ANFIS Fuzzy convolutional neural network (CNN) integrated with local binary pattern (LBP) features. Experiments involve using the models without LBP, as well as, with LBP features. For both sets of experiments, the proposed ANFIS CNN model performs superbly. It shows an accuracy score of 0.8478 without using LBP features while its precision, recall, and F1 scores are 0.8959, 0.9045, and 0.8953, respectively. Incorporating LBP features, the proposed model achieved exceptional performance, with accuracy, precision, recall, and an F1 score of higher than 99%. Comprehensive comparisons with state-of-the-art techniques further highlight the superiority of the proposed method. Additionally, cross-validation was applied to ensure the robustness and reliability of the results. This approach demonstrates a significant advancement in agricultural disease detection, promising enhanced accuracy and efficiency in real-world applications.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.