介电层上金属孔阵列中表面等离子体与法布里-珀罗共振的相互作用

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Applied Physics Pub Date : 2024-11-13 DOI:10.1016/j.cap.2024.11.006
J. Jeon , H.J. Kim , B.S. Chun , S.J. Lee
{"title":"介电层上金属孔阵列中表面等离子体与法布里-珀罗共振的相互作用","authors":"J. Jeon ,&nbsp;H.J. Kim ,&nbsp;B.S. Chun ,&nbsp;S.J. Lee","doi":"10.1016/j.cap.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the resonant behavior of a nanostructured absorber consisting of a metal hole array (MHA) on a dielectric layer (BCB) forming a cavity on a metal ground plane (MGP). By varying the thickness of the BCB layer, the resonance spectra were analyzed under different conditions. Our simulations reveal the intricate interplay between surface plasmon and Fabry-Perot resonances within the MHA-BCB-MGP structure. We observe that as the dielectric thickness changes, the resonance peaks shift, exhibiting phenomena such as Rabi splitting and bifurcation. These features are particularly pronounced under transverse magnetic polarization, indicating the complex interaction between different resonance modes and polarization states. In addition, changes in MHA diameter affected the dominance of either surface plasmon or Fabry-Perot resonances, illustrating the complex relationship between structure and resonance behavior. Reflection spectra under different polarizations and angles of incidence showed agreement between simulation and experiment, validating the proposed model.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 81-87"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interplay of surface plasmon and Fabry-Perot resonances in metallic hole arrays on dielectric layers\",\"authors\":\"J. Jeon ,&nbsp;H.J. Kim ,&nbsp;B.S. Chun ,&nbsp;S.J. Lee\",\"doi\":\"10.1016/j.cap.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the resonant behavior of a nanostructured absorber consisting of a metal hole array (MHA) on a dielectric layer (BCB) forming a cavity on a metal ground plane (MGP). By varying the thickness of the BCB layer, the resonance spectra were analyzed under different conditions. Our simulations reveal the intricate interplay between surface plasmon and Fabry-Perot resonances within the MHA-BCB-MGP structure. We observe that as the dielectric thickness changes, the resonance peaks shift, exhibiting phenomena such as Rabi splitting and bifurcation. These features are particularly pronounced under transverse magnetic polarization, indicating the complex interaction between different resonance modes and polarization states. In addition, changes in MHA diameter affected the dominance of either surface plasmon or Fabry-Perot resonances, illustrating the complex relationship between structure and resonance behavior. Reflection spectra under different polarizations and angles of incidence showed agreement between simulation and experiment, validating the proposed model.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"69 \",\"pages\":\"Pages 81-87\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156717392400244X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156717392400244X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了纳米结构吸收器的共振行为,该吸收器由介质层(BCB)上的金属孔阵列(MHA)组成,在金属地平面(MGP)上形成一个空腔。通过改变 BCB 层的厚度,我们分析了不同条件下的共振频谱。我们的模拟揭示了 MHA-BCB-MGP 结构中表面等离子体和法布里-珀罗共振之间错综复杂的相互作用。我们观察到,随着电介质厚度的变化,共振峰也会发生变化,表现出拉比分裂和分叉等现象。这些特征在横向磁极化条件下尤为明显,表明不同共振模式和极化态之间存在复杂的相互作用。此外,MHA 直径的变化会影响表面等离子体或法布里-珀罗共振的主导地位,这说明了结构与共振行为之间的复杂关系。不同偏振和入射角下的反射光谱显示模拟与实验结果一致,验证了所提出的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interplay of surface plasmon and Fabry-Perot resonances in metallic hole arrays on dielectric layers
This study investigates the resonant behavior of a nanostructured absorber consisting of a metal hole array (MHA) on a dielectric layer (BCB) forming a cavity on a metal ground plane (MGP). By varying the thickness of the BCB layer, the resonance spectra were analyzed under different conditions. Our simulations reveal the intricate interplay between surface plasmon and Fabry-Perot resonances within the MHA-BCB-MGP structure. We observe that as the dielectric thickness changes, the resonance peaks shift, exhibiting phenomena such as Rabi splitting and bifurcation. These features are particularly pronounced under transverse magnetic polarization, indicating the complex interaction between different resonance modes and polarization states. In addition, changes in MHA diameter affected the dominance of either surface plasmon or Fabry-Perot resonances, illustrating the complex relationship between structure and resonance behavior. Reflection spectra under different polarizations and angles of incidence showed agreement between simulation and experiment, validating the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
期刊最新文献
Editorial Board Synergistic impact of Al2O3 capping layer and deposition temperature for enhancing the ferroelectricity of undoped-HfO2 thin films Improved mobility in InAs nanowire FETs with sulfur-based surface treatment Graphene/WS2/LaVO3 heterojunction for self-powered, high-speed, and broadband photodetectors Oxidation effects on the optical and electrical properties of MoS2 under controlled baking temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1