Mirela Cesar Barros, Victor Feliz Pedrinha, Felipe Eduardo Oliveira, Maria Cristina Marcucci, Brenda Paula F A Gomes, Luciane Dias de Oliveira, Flaviana Bombarda de Andrade
{"title":"传统和替代冲洗溶液经超声波激活后,主根管和管腔内核分枝杆菌及其内毒素的减少。","authors":"Mirela Cesar Barros, Victor Feliz Pedrinha, Felipe Eduardo Oliveira, Maria Cristina Marcucci, Brenda Paula F A Gomes, Luciane Dias de Oliveira, Flaviana Bombarda de Andrade","doi":"10.1080/08927014.2024.2426765","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated conventional and alternative irrigation solutions combined with ultrasonic irrigant activation (UIA) against <i>Fusobacterium nucleatum</i> (<i>F. nucleatum</i>) and its endotoxin (LPS) in main root canal and dentinal tubules, using a new intratubular infection model. Seventy dentin cylinders were infected with <i>F. nucleatum</i> for seven days under anaerobic conditions and treated with 2.5% sodium hypochlorite (NaOCl), limewater + 2.5% NaOCl, and 10% ethanolic propolis extract (EEP), administered by syringe irrigation (SI) or UIA. Microbiological samples were collected before and after irrigation to determine CFU ml<sup>-1</sup> and LPS levels. Confocal microscopy assessed bacterial membrane damage with Live/Dead staining. Irrigation solutions effectively reduced CFU ml<sup>-1</sup>. UIA caused greater damage to the bacterial membranes and reduced LPS levels. The ultrasonic activation of 10% EEP and limewater + 2.5% NaOCl were comparable to 2.5% NaOCl (<i>p</i> > 0.05). UIA improved the effectiveness of solutions, suggesting potential for alternative substances. Randomized clinical trials using these protocols are recommended.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"904-914"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decrease from main root canal and intratubular <i>Fusobacterium nucleatum</i> and its endotoxin after ultrasonic activation of conventional and alternative irrigation solutions.\",\"authors\":\"Mirela Cesar Barros, Victor Feliz Pedrinha, Felipe Eduardo Oliveira, Maria Cristina Marcucci, Brenda Paula F A Gomes, Luciane Dias de Oliveira, Flaviana Bombarda de Andrade\",\"doi\":\"10.1080/08927014.2024.2426765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated conventional and alternative irrigation solutions combined with ultrasonic irrigant activation (UIA) against <i>Fusobacterium nucleatum</i> (<i>F. nucleatum</i>) and its endotoxin (LPS) in main root canal and dentinal tubules, using a new intratubular infection model. Seventy dentin cylinders were infected with <i>F. nucleatum</i> for seven days under anaerobic conditions and treated with 2.5% sodium hypochlorite (NaOCl), limewater + 2.5% NaOCl, and 10% ethanolic propolis extract (EEP), administered by syringe irrigation (SI) or UIA. Microbiological samples were collected before and after irrigation to determine CFU ml<sup>-1</sup> and LPS levels. Confocal microscopy assessed bacterial membrane damage with Live/Dead staining. Irrigation solutions effectively reduced CFU ml<sup>-1</sup>. UIA caused greater damage to the bacterial membranes and reduced LPS levels. The ultrasonic activation of 10% EEP and limewater + 2.5% NaOCl were comparable to 2.5% NaOCl (<i>p</i> > 0.05). UIA improved the effectiveness of solutions, suggesting potential for alternative substances. Randomized clinical trials using these protocols are recommended.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"904-914\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2426765\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2426765","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Decrease from main root canal and intratubular Fusobacterium nucleatum and its endotoxin after ultrasonic activation of conventional and alternative irrigation solutions.
This study evaluated conventional and alternative irrigation solutions combined with ultrasonic irrigant activation (UIA) against Fusobacterium nucleatum (F. nucleatum) and its endotoxin (LPS) in main root canal and dentinal tubules, using a new intratubular infection model. Seventy dentin cylinders were infected with F. nucleatum for seven days under anaerobic conditions and treated with 2.5% sodium hypochlorite (NaOCl), limewater + 2.5% NaOCl, and 10% ethanolic propolis extract (EEP), administered by syringe irrigation (SI) or UIA. Microbiological samples were collected before and after irrigation to determine CFU ml-1 and LPS levels. Confocal microscopy assessed bacterial membrane damage with Live/Dead staining. Irrigation solutions effectively reduced CFU ml-1. UIA caused greater damage to the bacterial membranes and reduced LPS levels. The ultrasonic activation of 10% EEP and limewater + 2.5% NaOCl were comparable to 2.5% NaOCl (p > 0.05). UIA improved the effectiveness of solutions, suggesting potential for alternative substances. Randomized clinical trials using these protocols are recommended.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.